函数的连续性与间断点
函数的连续性
定义:
-
设
函
数
f
(
x
)
在
点
x
=
x
0
的
某
ξ
邻
域
U
(
x
0
,
ξ
)
内
有
定
义
设函数f(x)在点x= x_0的某\xi 邻域U(x_0,\xi)内有定义
设函数f(x)在点x=x0的某ξ邻域U(x0,ξ)内有定义,若当自变量的增量
Δ
x
=
x
−
x
0
→
0
时
\Delta x=x-x_0 \rightarrow 0时
Δx=x−x0→0时,
函
数
的
增
量
Δ
y
=
y
−
y
0
→
0
函数的增量\Delta y=y-y_0 \rightarrow 0
函数的增量Δy=y−y0→0,
即 lim Δ x → 0 Δ y = 0 , 即\lim_{\Delta x \rightarrow 0} \Delta y=0, 即limΔx→0Δy=0,
则 称 函 数 f ( x ) 在 点 x − x 0 处 连 续 。 则称函数f(x)在点x-x_0处连续。 则称函数f(x)在点x−x0处连续。 -
设
函
数
f
(
x
)
在
点
x
=
x
0
的
某
ξ
邻
域
U
(
x
0
,
ξ
)
内
有
定
义
设函数f(x)在点x= x_0的某\xi 邻域U(x_0,\xi)内有定义
设函数f(x)在点x=x0的某ξ邻域U(x0,ξ)内有定义,
若 l i m x → x 0 f ( x ) = f ( x 0 ) 若lim_{x \rightarrow x_0} f(x)=f(x_0) 若limx→x0f(x)=f(x0),
则 称 函 数 f ( x ) 在 点 x − x 0 处 连 续 则称函数f(x)在点x-x_0处连续 则称函数f(x)在点x−x0处连续
例
1
:
(
讨
论
分
段
函
数
的
连
续
性
)
例1:(讨论分段函数的连续性)
例1:(讨论分段函数的连续性)
讨
论
函
数
f
(
x
)
=
{
1
x
+
2
,
x
<
0
0
,
x
=
0
x
a
r
c
t
a
n
1
x
,
x
>
0
的
连
续
性
讨论函数f(x)=\begin{cases} {{1}\over{x+2}}, x<0 \\ 0 , x=0\\ xarctan{{1}\over{x}}, x>0\\ \end{cases}的连续性
讨论函数f(x)=⎩⎪⎨⎪⎧x+21,x<00,x=0xarctanx1,x>0的连续性
例
2
:
(
分
段
函
数
求
参
数
)
例2:(分段函数求参数)
例2:(分段函数求参数)
设
函
数
f
(
x
)
=
{
a
+
e
−
1
x
,
x
>
0
b
+
1
,
x
=
0
s
i
n
3
x
x
,
x
<
0
设函数f(x)=\begin{cases} a+e^{-{1} \over {x}}, x>0\\ b+1 , x=0\\ {{sin3x}\over{x}} , x<0\\ \end{cases}
设函数f(x)=⎩⎪⎨⎪⎧a+ex−1,x>0b+1,x=0xsin3x,x<0在点x=0处连续,求a,b的值 $
反函数连续性定理
若
函
数
y
=
f
(
x
)
在
[
a
,
b
]
上
严
格
单
调
递
增
(
或
递
减
)
且
连
续
,
同
时
f
(
a
)
=
α
,
且
f
(
b
)
=
β
若函数y=f(x)在[a,b]上严格单调递增(或递减)且连续,同时f(a)=\alpha,且f(b)=\beta
若函数y=f(x)在[a,b]上严格单调递增(或递减)且连续,同时f(a)=α,且f(b)=β
则
其
反
函
数
x
=
f
−
1
(
y
)
则其反函数x= f^{-1}(y)
则其反函数x=f−1(y)
在
[
α
,
β
]
(
或
[
β
,
α
]
)
上
严
格
单
调
递
增
(
或
递
减
)
且
连
续
在[\alpha,\beta](或[\beta,\alpha])上严格单调递增(或递减)且连续
在[α,β](或[β,α])上严格单调递增(或递减)且连续.
注:原函数的定义域即为反函数的值域,原函数的值域几位反函数的定义域
复合函数连续性定理
若
复
合
函
数
的
外
层
函
数
连
续
,
则
极
限
可
以
去
到
内
层
。
若复合函数的外层函数连续,则极限可以去到内层。
若复合函数的外层函数连续,则极限可以去到内层。
即
lim
x
→
0
f
[
g
(
x
)
]
=
f
(
lim
x
→
0
g
(
x
)
)
即 \lim_{x \rightarrow 0}f[g(x)] = f( \lim_{x \rightarrow 0}g(x))
即limx→0f[g(x)]=f(limx→0g(x))
若
内
层
函
数
也
连
续
,
则
满
足
lim
x
→
0
f
[
g
(
x
)
]
=
f
(
lim
x
→
0
g
(
x
)
)
=
f
(
g
(
x
0
)
)
若内层函数也连续,则满足 \lim_{x \rightarrow 0}f[g(x)] = f( \lim_{x \rightarrow 0}g(x)) = f(g(x_0))
若内层函数也连续,则满足limx→0f[g(x)]=f(limx→0g(x))=f(g(x0))
闭区间上连续函数的性质
最大值与最小值定理:
若 函 数 f ( x ) 在 闭 区 间 [ a , b ] 上 连 续 , 则 函 数 f ( x ) 在 [ a , b ] 上 比 取 到 最 大 值 M 和 最 小 值 m 。 若函数f(x)在闭区间[a,b]上连续,则函数f(x)在[a,b]上比取到最大值M和最小值m。 若函数f(x)在闭区间[a,b]上连续,则函数f(x)在[a,b]上比取到最大值M和最小值m。
例
:
(
闭
区
间
上
连
续
函
数
有
界
)
例:(闭区间上连续函数有界)
例:(闭区间上连续函数有界)
设
函
数
f
(
x
)
在
闭
区
间
[
a
,
b
]
上
连
续
,
并
且
a
≤
f
(
x
)
≤
b
设函数f(x)在闭区间[a,b]上连续 ,并且a \leq f(x) \leq b
设函数f(x)在闭区间[a,b]上连续,并且a≤f(x)≤b,
证
明
在
[
a
,
b
]
上
至
少
存
在
一
点
ξ
∈
[
a
,
b
]
,
使
得
f
(
ξ
)
=
ξ
.
证明在[a,b]上至少存在一点\xi \in [a,b],使得f(\xi)=\xi.
证明在[a,b]上至少存在一点ξ∈[a,b],使得f(ξ)=ξ.
零点存在定理:
若
函
数
f
(
x
)
在
闭
区
间
[
a
,
b
]
上
连
续
,
且
f
(
a
)
⋅
f
(
b
)
<
0
若函数f(x)在闭区间[a,b]上连续,且f(a)\cdot f(b)<0
若函数f(x)在闭区间[a,b]上连续,且f(a)⋅f(b)<0
则
存
在
ξ
∈
(
a
,
b
)
,
使
得
f
(
ξ
)
=
0
则存在\xi\in (a,b),使得f(\xi)=0
则存在ξ∈(a,b),使得f(ξ)=0
例
:
(
借
助
保
号
性
判
断
方
程
是
否
存
在
实
根
)
例:(借助保号性判断方程是否存在实根)
例:(借助保号性判断方程是否存在实根)
证
明
:
方
程
x
3
+
p
x
2
+
q
=
0
至
少
有
一
个
实
根
。
证明:方程x^3 +px^2 +q=0至少有一个实根。
证明:方程x3+px2+q=0至少有一个实根。
介值定理:
若
函
数
f
(
x
)
在
闭
区
间
[
a
,
b
]
上
连
续
,
f
(
a
)
≠
f
(
b
)
若函数f(x)在闭区间[a,b]上连续,f(a)\neq f(b)
若函数f(x)在闭区间[a,b]上连续,f(a)̸=f(b)
则
对
于
介
于
f
(
a
)
与
f
(
b
)
之
间
的
任
意
常
数
C
,
存
在
ξ
∈
(
a
,
b
)
,
使
得
f
(
ξ
)
=
c
则对于介于f(a)与f(b)之间的任意常数C,存在\xi\in (a,b),使得f(\xi)=c
则对于介于f(a)与f(b)之间的任意常数C,存在ξ∈(a,b),使得f(ξ)=c
例
:
(
作
图
构
造
函
数
)
例:(作图构造函数 )
例:(作图构造函数)
设
f
(
x
)
∈
C
[
0
,
1
]
,
且
f
(
0
)
=
f
(
1
)
设f(x)\in C_{[0,1]}, 且f(0)=f(1)
设f(x)∈C[0,1],且f(0)=f(1),
证
明
:
ξ
∈
[
0
,
2
3
]
证明:\xi \in [0,{{2}\over{3}}]
证明:ξ∈[0,32],
使
得
f
(
ξ
+
1
3
)
=
f
(
ξ
)
使得f(\xi + {{1}\over 3})=f(\xi)
使得f(ξ+31)=f(ξ).
函数的间断点
间断点的类型
- 第一类间断点: { 可 去 间 断 点 : l i m x → x 0 − f ( x ) = l i m x → x 0 + f ( x ) 跳 跃 间 断 点 : l i m x → x 0 − f ( x ) ≠ l i m x → x 0 + f ( x ) \begin{cases} 可去间断点:lim_{x\rightarrow x_0^-}f(x)=lim_{x\rightarrow x_0^+}f(x)\\ 跳跃间断点:lim_{x\rightarrow x_0^-}f(x) \neq lim_{x\rightarrow x_0^+}f(x)\\ \end{cases} {可去间断点:limx→x0−f(x)=limx→x0+f(x)跳跃间断点:limx→x0−f(x)̸=limx→x0+f(x)
- 第二类间断点:
若 函 数 f ( x ) 在 x = x 0 点 处 的 单 侧 极 限 若函数f(x)在x=x_0点处的单侧极限 若函数f(x)在x=x0点处的单侧极限 l i m x → x 0 − f ( x ) 与 l i m x → x 0 + f ( x ) 至 少 有 一 个 不 存 在 , lim_{x\rightarrow x_0^-}f(x)与lim_{x\rightarrow x_0^+}f(x)至少有一个不存在, limx→x0−f(x)与limx→x0+f(x)至少有一个不存在,
则 称 点 x = x 0 为 函 数 f ( x ) 的 第 二 类 间 断 点 。 则称点x=x_0为函数f(x)的第二类间断点。 则称点x=x0为函数f(x)的第二类间断点。
例
:
(
求
间
断
点
并
判
断
其
类
型
)
例:(求间断点并判断其类型)
例:(求间断点并判断其类型)
求
函
数
f
(
x
)
=
{
2
1
x
−
1
2
1
x
+
1
,
x
≠
0
1
,
x
=
0
的
间
断
点
并
判
断
其
类
型
。
求函数f(x)=\begin{cases}{{2^{{1}\over{x}}-1}\over{2^{{1}\over{x}}+1}} , x\neq 0 \\ 1 , x=0 \\ \end{cases}的间断点并判断其类型。
求函数f(x)=⎩⎨⎧2x1+12x1−1,x̸=01,x=0的间断点并判断其类型。
【不妨顺便回忆其他与分段函数有关的题型】
- 分段函数求参数 (利用分段点构造等式)
- 分段函数求导(注意分段点处的导数一定按照定义法求解)
- 分段函数的复合