0108函数的连续性与间断点-函数与极限-高等数学

1 函数的连续性

1.1 直观认知

自然界中的许多现象,如气温的变化、河水的流动、植物的生成等都是连续变化着的。这种现象在函数关系上的反应,就是函数的连续性。例如就气温变化来看,当时间的变动很微小时,气温的变化也很微小。

1.2 函数增量

设变量 u u u从它的一个初始值 u 1 u_1 u1变道终值 u 2 u_2 u2,终值与初始值的差 u 2 − u 1 u_2-u_1 u2u1就叫做变量 u u u的增量,记做 Δ u \Delta u Δu,即 Δ u = u 2 − u 1 \Delta u=u_2-u_1 Δu=u2u1.

现在假定函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一个邻域内有定义。当自变量 x x x在该邻域内从 x 0 x_0 x0变到 x 0 + Δ x x_0+\Delta x x0+Δx时,函数值 f ( x ) f(x) f(x)相应的从 f ( x 0 ) f(x_0) f(x0)变到 f ( x 0 + Δ x ) f(x_0+\Delta x) f(x0+Δx) ,即:
自变量增量 x → x 0 , Δ x = x − x 0 函数的增量 f ( x ) → f ( x 0 ) , Δ y = f ( x ) − f ( x 0 ) 自变量增量x\to x_0, \Delta x = x - x_0 \\ 函数的增量f(x)\to f(x_0),\Delta y = f(x)-f(x_0) 自变量增量xx0,Δx=xx0函数的增量f(x)f(x0),Δy=f(x)f(x0)
函数增量如下图1.2-1所示:在这里插入图片描述

1.3 函数连续的定义

Def1:设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一邻域内有定义,如果

lim ⁡ Δ x → 0 Δ y = lim ⁡ Δ x → 0 [ f ( x 0 + Δ x ) − f ( x 0 ) ] = 0 \lim\limits_{\Delta x\to 0}{\Delta y}=\lim\limits_{\Delta x\to 0}{[f(x_0+\Delta x)-f(x_0)]}=0 Δx0limΔy=Δx0lim[f(x0+Δx)f(x0)]=0

那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0连续。

Def2:设函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0的某一邻域内有定义,如果

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}{f(x)}=f(x_0) xx0limf(x)=f(x0)

那么称函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0连续。

Def3:( ϵ − δ \epsilon-\delta ϵδ) f ( x ) f(x) f(x)在点 x 0 x_0 x0连续 ⇔ ∀ ϵ > 0 , ∃ δ > 0 , 当 ∣ x − x 0 ∣ < δ 时,有 ∣ f ( x ) − f ( x 0 ) ∣ < ϵ \Leftrightarrow \forall\epsilon\gt 0,\exists\delta\gt 0,当|x-x_0|\lt\delta时,有|f(x)-f(x_0)|\lt \epsilon ϵ>0,δ>0,xx0<δ时,有f(x)f(x0)<ϵ

  • 注意事项:虽然三种定义形式不一样,但是本质是相同的

    1. 三要素
      1. f ( x ) 在 x 0 f(x)在x_0 f(x)x0的某一邻域内有定义
      2. lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}{f(x)} xx0limf(x)存在
      3. lim ⁡ x → x 0 f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}{f(x)}=f(x_0) xx0limf(x)=f(x0)
    2. x 0 x_0 x0点连续描述的是函数 y = f ( x ) y=f(x) y=f(x)在点 x 0 x_0 x0某一邻域的状态,即单独的孤立点说连续性无意义。
    3. 定义2提供了求极限的方式。
    4. 应用:一般情况下,证明连续性用定义1;判断分段函数在分界点连续性用定义2。

1.4 单侧连续

如下图1.4-1所示:在这里插入图片描述

函数 f = f ( x ) 在点 x 0 f=f(x)在点x_0 f=f(x)在点x0某一邻域内有定义

左连续: lim ⁡ x → x 0 − f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^-}{f(x)}=f(x_0) xx0limf(x)=f(x0)

右连续: lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0^+}{f(x)}=f(x_0) xx0+limf(x)=f(x0)

定理: f ( x ) f(x) f(x) x 0 x_0 x0处连续 ⇔ f ( x ) \Leftrightarrow f(x) f(x) x 0 x_0 x0即左连续又右连续,即

lim ⁡ x → x 0 f ( x ) = f ( x 0 ) ⇔ lim ⁡ x → x 0 − f ( x ) = lim ⁡ x → x 0 + f ( x ) = f ( x 0 ) \lim\limits_{x\to x_0}{f(x)}=f(x_0)\Leftrightarrow\lim\limits_{x\to x_0^-}{f(x)}=\lim\limits_{x\to x_0^+}{f(x)}=f(x_0) xx0limf(x)=f(x0)xx0limf(x)=xx0+limf(x)=f(x0)

  • 说明:此定理常用于分段函数分界点出连续性判断

1.5 区间连续

上面探讨的是函数在某点的连续性,下面给出函数在某一区间连续性的说明。

在区间上每一点都连续的函数,叫做在该区间上的连续函数,或者说函数在该区间上连续。如果区间包含端点,就是指函数在右端点左连续,在左端点右连续。

示例:函数 y = f ( x ) , 在区间 [ a , b ] 有定义 y=f(x),在区间[a,b]有定义 y=f(x),在区间[a,b]有定义,那么 f ( x ) f(x) f(x)在[a,b]上连续满足下面3个条件:

  • f ( x ) f(x) f(x)在点a出左连续

  • f ( x ) f(x) f(x)在区间(a,b)上处处连续

  • 函数 f ( x ) f(x) f(x)在点b右连续

1.6 连续性例题

例3:设函数
f ( x ) = { x 4 + a x + b ( x − 1 ) ( x + 2 ) , x ≠ 1 , x ≠ − 2 2 , x = 1 f(x)= \begin{cases} \frac{x^4+ax+b}{(x-1)(x+2)},x\not=1,x\not=-2 \\ 2,\qquad\qquad x=1 \\ \end{cases} f(x)={(x1)(x+2)x4+ax+b,x=1,x=22,x=1
x = 1 x=1 x=1处连续,则 a 和 b a和b ab取何值?
因为函数 f ( x ) 在点 x = 1 出连续,所以 lim ⁡ x → 1 f ( x ) = lim ⁡ x → 1 x 4 + a x + b ( x − 1 ) ( x + 2 ) = f ( 1 ) = 2 因为 lim ⁡ x → 1 ( x − 1 ) ( x + 2 ) = 0 所以 lim ⁡ x → 1 x 4 + a x + b = 0 , 得 a = − ( 1 + b ) , 所以 lim ⁡ x → 1 x 4 + a x + b ( x − 1 ) ( x + 2 ) = lim ⁡ x → 1 x 4 − ( b + 1 ) x + b ( x − 1 ) ( x + 2 ) = lim ⁡ x → 1 ( x − 1 ) ( x 3 + x 2 + x − b ) ( x − 1 ) ( x + 2 ) = 2 , 得 b = − 3 , a = 2 因为函数f(x)在点x=1出连续,所以 \\ \lim\limits_{x\to 1}{f(x)}=\lim\limits_{x\to 1}{\frac{x^4+ax+b}{(x-1)(x+2)}}=f(1)=2 \\ 因为\lim\limits_{x\to 1}{(x-1)(x+2)}=0所以 \lim\limits_{x\to 1}{x^4+ax+b} = 0 ,得 \\ a=-(1+b),所以 \\ \lim\limits_{x\to 1}{\frac{x^4+ax+b}{(x-1)(x+2)}}= \lim\limits_{x\to 1}{\frac{x^4-(b+1)x+b}{(x-1)(x+2)}}=\lim\limits_{x\to 1}{\frac{(x-1)(x^3+x^2+x-b)}{(x-1)(x+2)}}=2,得b=-3,a=2 因为函数f(x)在点x=1出连续,所以x1limf(x)=x1lim(x1)(x+2)x4+ax+b=f(1)=2因为x1lim(x1)(x+2)=0所以x1limx4+ax+b=0,a=(1+b),所以x1lim(x1)(x+2)x4+ax+b=x1lim(x1)(x+2)x4(b+1)x+b=x1lim(x1)(x+2)(x1)(x3+x2+xb)=2,b=3,a=2

2 函数的间断点

2.1 函数间断点定义

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某去心邻域内有定义。在此前提下,如果函数 f ( x ) f(x) f(x)有下列3种情况之一:

(1) x = x 0 x=x_0 x=x0没有定义;

(2)在 x = x 0 x=x_0 x=x0处有定义,但是 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)不存在;

(3)在 x = x 0 x=x_0 x=x0处有定义,且 lim ⁡ x → x 0 f ( x ) \lim\limits_{x\to x_0}f(x) xx0limf(x)存在,但 lim ⁡ x → x 0 f ( x ) ≠ f ( x 0 ) \lim\limits_{x\to x_0}f(x)\not = f(x_0) xx0limf(x)=f(x0),

那么函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0处不连续,点 x 0 x_0 x0称为函数 f ( x ) f(x) f(x)的不连续点或间断点。

2.2 函数间断点分类

如果 x 0 x_0 x0是函数 f ( x ) f(x) f(x)的间断点,但左极限 f ( x 0 − ) f(x_0^-) f(x0)及右极限都存在,那么 x 0 x_0 x0称为函数 f ( x ) f(x) f(x)的第一类间断点。

如果左极限和右极限相等称为可去间断点;不相等称为跳跃间断点。

不是第一类间断点的任何间断点,都称为第二类间断点。无穷间断点和震荡间断点是第二类间断点。

2.3 函数间断点例题

例5:讨论函数
f ( x ) = { − x , x ≤ 0 1 + x , x > 0 f(x)= \begin{cases} -x,\quad x\le0 \\ 1+x,\quad x\gt 0 \end{cases} f(x)={x,x01+x,x>0
x = 0 x=0 x=0处的连续性
解: lim ⁡ x → 0 − f ( x ) = lim ⁡ x → 0 − 1 ( − x ) = 0 lim ⁡ x → 0 + f ( x ) = lim ⁡ x → 0 + ( 1 + x ) = 1 因为函数 f ( x ) 在点 0 处左右极限存在但是不相等,所以 x = 0 为函数 f ( x ) 的第一类间断点中的跳跃间断点。 解: \lim\limits_{x\to0^-}{f(x)}=\lim\limits_{x\to0^-1}{(-x)}=0 \\ \lim\limits_{x\to0^+}{f(x)}=\lim\limits_{x\to0^+}{(1+x)}=1 \\ 因为函数f(x)在点0处左右极限存在但是不相等,所以x=0为函数f(x)的第一类间断点中的跳跃间断点。 解:x0limf(x)=x01lim(x)=0x0+limf(x)=x0+lim(1+x)=1因为函数f(x)在点0处左右极限存在但是不相等,所以x=0为函数f(x)的第一类间断点中的跳跃间断点。

  • 跳跃间断点图示2.3-1:在这里插入图片描述

例6:讨论函数
f ( x ) = { 2 x , 0 ≤ x < 1 1 , x = 1 x + 1 , x > 1 f(x)= \begin{cases} 2\sqrt x,\quad 0\le x\lt 1 \\ 1, \qquad x=1 \\ x+1,\quad x\gt1 \end{cases} f(x)= 2x ,0x<11,x=1x+1,x>1
x = 1 x=1 x=1处的连续性。
解 lim ⁡ x → 1 − f ( x ) = lim ⁡ x → 1 − 2 x = 2 lim ⁡ x → 1 + f ( x ) = lim ⁡ x → 1 − ( x + 1 ) = 2 因为 lim ⁡ x → 1 − f ( x ) = lim ⁡ x → 1 + f ( x ) ≠ f ( 1 ) = 1 所以 x = 1 为函数 f ( x ) 的可去间断点 解 \lim\limits_{x\to1^-}{f(x)}=\lim\limits_{x\to1^-}{2\sqrt x}=2 \\ \lim\limits_{x\to1^+}{f(x)}=\lim\limits_{x\to1^-}{(x+1)} = 2 \\ 因为\lim\limits_{x\to1^-}{f(x)}=\lim\limits_{x\to1^+}{f(x)}\not = f(1)=1 \\ 所以x=1为函数f(x)的可去间断点 x1limf(x)=x1lim2x =2x1+limf(x)=x1lim(x+1)=2因为x1limf(x)=x1+limf(x)=f(1)=1所以x=1为函数f(x)的可去间断点

  • 可去间断点如下图2.3-2所示:在这里插入图片描述

例7:函数 f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1 x = 0 x=0 x=0处的连续性
lim ⁡ x → 0 − = − ∞ lim ⁡ x → 0 − = + ∞ 所以 x = 0 为 f ( x ) 的第二类无穷间断点。 \lim\limits_{x\to 0^-}=-\infty\\ \lim\limits_{x\to 0^-}=+\infty \\ 所以x=0为f(x)的第二类无穷间断点。 x0lim=x0lim=+所以x=0f(x)的第二类无穷间断点。
如下图2.3-3所示:在这里插入图片描述

例8:函数
f ( x ) = { sin ⁡ 1 x , x ≠ 0 0 , x = 0 f(x)= \begin{cases} \sin\frac{1}{x},\quad x\not=0 \\ 0,\quad x=0 \end{cases} f(x)={sinx1,x=00,x=0
x = 0 x=0 x=0处的连续性

x = 0 为函数 f ( x ) x=0为函数f(x) x=0为函数f(x)的第二类震荡间断点,如下图2.3-4所示:在这里插入图片描述

  • 注意事项:函数的间断点可能有无穷多个

    • 举例:处处不连续,在R内任意一点震荡间断点。
      狄利克雷函数 D ( x ) = { 1 , x ∈ Q 0 , x ∈ Q c 狄利克雷函数D(x)= \begin{cases} 1,x\in Q \\ 0,x\in Q^c \end{cases} 狄利克雷函数D(x)={1,xQ0,xQc

例9:讨论函数 f ( x ) = lim ⁡ n → ∞ 1 − x 2 n 1 + x 2 n ⋅ x f(x)=\lim\limits_{n\to\infty}{\frac{1-x^{2n}}{1+x^{2n}}\cdot x} f(x)=nlim1+x2n1x2nx的连续性,若有间断点,判断其类型。
极限 n 是变量, x 可以看做是常量,先根据 x 的取值,求极限的值 lim ⁡ n → ∞ ( 1 − x ) 2 n ( 1 + x ) 2 n = { 1 , ∣ x ∣ < 1 0 , ∣ x ∣ = 1 − 1 , ∣ x ∣ > 1 极限n是变量,x可以看做是常量,先根据x的取值,求极限的值 \\ \lim\limits_{n\to\infty}{\frac{(1-x)^{2n}}{(1+x)^{2n}}}= \begin{cases} 1,|x|\lt 1 \\ 0,|x|=1 \\ -1,|x|\gt 1 \\ \end{cases} \\ 极限n是变量,x可以看做是常量,先根据x的取值,求极限的值nlim(1+x)2n(1x)2n= 1,x<10,x=11,x>1 函数 f ( x ) = { − x , x < − 1 0 , x = − 1 x , − 1 < x < 1 0 , x = 1 − x , x > 1 函数f(x)= \begin{cases} -x,x\lt -1 \\ 0,x=-1 \\ x,-1\lt x\lt 1 \\ 0,x=1 \\ -x,x\gt 1 \end{cases} \\ 函数f(x)= x,x<10,x=1x,1<x<10,x=1x,x>1 x = − 1 处, lim ⁡ x → − 1 − f ( x ) = lim ⁡ x → − 1 − ( − x ) = 1 lim ⁡ x → − 1 + f ( x ) = lim ⁡ x → − 1 + ( x ) = − 1 所以 x = − 1 是函数 f ( x ) 的第一类跳跃间断点的。 x = 1 处, lim ⁡ x → 1 − f ( x ) = lim ⁡ x → 1 − ( x ) = 1 lim ⁡ x → − 1 + f ( x ) = lim ⁡ x → − 1 + ( − x ) = − 1 所以 x = 1 是函数 f ( x ) 的第一类跳跃间断点的 x=-1处,\\ \lim\limits_{x\to -1^-}{f(x)}=\lim\limits_{x\to-1^-}{(-x)}=1 \\ \lim\limits_{x\to -1^+}{f(x)}=\lim\limits_{x\to-1^+}{(x)}=-1 \\ 所以x=-1是函数f(x)的第一类跳跃间断点的。 x=1处,\\ \lim\limits_{x\to 1^-}{f(x)}=\lim\limits_{x\to1^-}{(x)}=1 \\ \lim\limits_{x\to -1^+}{f(x)}=\lim\limits_{x\to-1^+}{(-x)}=-1 \\ 所以x=1是函数f(x)的第一类跳跃间断点的 x=1处,x1limf(x)=x1lim(x)=1x1+limf(x)=x1+lim(x)=1所以x=1是函数f(x)的第一类跳跃间断点的。x=1处,x1limf(x)=x1lim(x)=1x1+limf(x)=x1+lim(x)=1所以x=1是函数f(x)的第一类跳跃间断点的

3 后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P56~p60.

[2]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p9.

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值