基于PaddleX实现电梯电瓶车检测


源地址.

一、项目背景

   电动车因为具有便捷、轻巧、无污染等优点,成为了广大民众出行的重要选择,但是电动车自身的电瓶存在安全隐患,目前仍然没有办法实现绝对的安全,近年来,电动车在室内、电梯内发生自燃、自爆的事件在新闻上常有报道,这些现象严重危害到了居民的生命、财产安全。
   因此,本项目将以“电梯电瓶车检测”为首要目标进行开发,待项目开发成功以后,可以很容易地将本项目迁移到居民楼门口、办公楼门口、餐厅门口等众多关键场地,而且本项目的成本低廉,检测效率高,可应用的场景十分广泛,具有巨大的商业价值。

二、数据集简介

1. 数据获取

  • 为了获取大量数据,以及节省标注时间,所以将pascal-voccoco2017中的摩托车数据提取出来,作为数据集。

LabelMe使用方法

2. 解压数据集和安装第三方库

!rm -rf data/pascalvoc
!rm -rf data/val2017
!rm -rf data/train2017
!rm -rf data/annotations
!unzip -oq /home/aistudio/data/data4379/pascalvoc.zip -d data/
!unzip -oq /home/aistudio/data/data7122/train2017.zip -d data/
!unzip -oq /home/aistudio/data/data7122/val2017.zip -d data/
!unzip -oq /home/aistudio/data/data7122/annotations_trainval2017.zip -d data/
!rm -rf motorbike

!pip -q install lxml

3. COCO2VOC

import os
import json
import cv2
from lxml import etree
import xml.etree.cElementTree as ET
import time
import pandas as pd
from tqdm import tqdm
import json


def coco2voc(anno, xml_dir):
    if not os.path.exists(xml_dir):
        os.makedirs(xml_dir)

    with open(anno, 'r', encoding='utf-8') as load_f:
        f = json.load(load_f)

    imgs = f['images']

    df_cate = pd.DataFrame(f['categories'])
    _ = df_cate.sort_values(["id"],ascending=True)
    df_anno = pd.DataFrame(f['annotations'])
    categories = dict(zip(df_cate.id.values, df_cate.name.values))

    for i in tqdm(range(len(imgs))):
        xml_content = []
        file_name = imgs[i]['file_name']
        height = imgs[i]['height']
        img_id = imgs[i]['id']
        width = imgs[i]['width']

        xml_content.append("<annotation>")
        xml_content.append("	<folder>VOC2007</folder>")
        xml_content.append("	<filename>"+file_name+"</filename>")
        xml_content.append("	<size>")
        xml_content.append("		<width>"+str(width)+"</width>")
        xml_content.append("		<height>"+str(height)+"</height>")
        xml_content.append("		<depth>3</depth>")
        xml_content.append("	</size>")
        xml_content.append("	<segmented>0</segmented>")
        
        annos = df_anno[df_anno["image_id"].isin([img_id])]

        for index, row in annos.iterrows():
            bbox = row["bbox"]
            category_id = row["category_id"]
            cate_name = categories[category_id]

            
            xml_content.append("	<object>")
            xml_content.append("		<name>"+cate_name+"</name>")
            xml_content.append("		<pose>Unspecified</pose>")
            xml_content.append("		<truncated>0</truncated>")
            xml_content.append("		<difficult>0</difficult>")
            xml_content.append("		<bndbox>")
            xml_content.append("			<xmin>"+str(int(bbox[0]))+"</xmin>")
            xml_content.append("			<ymin>"+str(int(bbox[1]))+"</ymin>")
            xml_content.append("			<xmax>"+str(int(bbox[0]+bbox[2]))+"</xmax>")
            xml_content.append("			<ymax>"+str(int(bbox[1]+bbox[3]))+"</ymax>")
            xml_content.append("		</bndbox>")
            xml_content.append("	</object>")
        xml_content.append("</annotation>")

        x = xml_content
        xml_content=[x[i] for i in range(0,len(x)) if x[i]!="\n"]


        xml_path = os.path.join(xml_dir,file_name.split('.')[-2] + '.xml')

        with open(xml_path, 'w+',encoding="utf8") as f:
            f.write('\n'.join(xml_content))
        xml_content[:]=[]
  • 转换
coco2voc('data/annotations/instances_train2017.json', 'data/train2017voc/Annotations')
coco2voc('data/annotations/instances_val2017.json', 'data/val2017voc/Annotations')

4. 将pascal-voccoco2017中的摩托车数据提取出来

  • 需要将coco2017中的motorcycle转换成motorbike
import os
import shutil
from tqdm import tqdm
import cv2


def voc2sc(ann_filepath, img_filepath, img_savepath, ann_savepath, classes, sc_class):
    """
    ann_filepath: xml文件夹路径
    img_filepath: 原图文件夹路径
    img_savepath: 保存原图路径
    ann_savepath: 保存xml文件夹路径
    classes: 所有类别
    sc_class: 挑选类别
    """
    if not os.path.exists(img_savepath):
        os.makedirs(img_savepath)
    if not os.path.exists(ann_savepath):
        os.makedirs(ann_savepath)

    names = locals()

    for file in tqdm(os.listdir(ann_filepath)):
        fp = open(ann_filepath + '/' + file)
        ann_savefile=ann_savepath+file
        fp_w = open(ann_savefile, 'w')
        lines = fp.readlines()
        ind_start = []
        ind_end = []
        lines_id_start = lines[:]
        lines_id_end = lines[:]
        #在xml中找到object块,并将其记录下来
        while "\t<object>\n" in lines_id_start:
            a = lines_id_start.index("\t<object>\n")
            ind_start.append(a)
            lines_id_start[a] = "delete"
        while "\t</object>\n" in lines_id_end:
            b = lines_id_end.index("\t</object>\n")
            ind_end.append(b)
            lines_id_end[b] = "delete"
        #names中存放所有的object块
        i = 0
        for k in range(0, len(ind_start)):
            names['block%d' % k] = []
            for j in range(0, len(classes)):
                if classes[j] in lines[ind_start[i] + 1]:
                    a = ind_start[i]
                    for o in range(ind_end[i] - ind_start[i] + 1):
                        names['block%d' % k].append(lines[a + o])
                    break
            i += 1
            #print(names['block%d' % k])
        # xml头
        if len(ind_start) == 0:
            fp.close()
            fp_w.close()
            os.remove(ann_savefile)
            continue
        string_start = lines[0:ind_start[0]]
        #xml尾
        string_end = [lines[len(lines) - 1]]
        #在给定的类中搜索,若存在则,写入object块信息
        a = 0
        for k in range(0, len(ind_start)):
            if sc_class in names['block%d' % k]:
                a += 1
                string_start += names['block%d' % k]
        string_start += string_end
        if 'size' not in str(string_start) and a != 0:
            s = """    <size>
        <width>{}</width>
        <height>{}</height>
        <depth>3</depth>
    </size>
"""
            img = cv2.imread(img_filepath + os.path.splitext(file)[0] + ".jpg")
            idx = string_start.index('\t<object>\n')
            string_start.insert(idx, s.format(img.shape[1], img.shape[0]))
        for c in range(0, len(string_start)):
            if '\t\t<name>motorcycle</name>\n' == string_start[c]:
                string_start[c] = '\t\t<name>motorbike</name>\n'
            fp_w.write(string_start[c])
        fp_w.close()

        #如果没有我们寻找的模块,则删除此xml,有的话拷贝图片
        if a == 0:
            os.remove(ann_savefile)
        else:
            name_img = img_filepath + os.path.splitext(file)[0] + ".jpg"
            shutil.copy(name_img, img_savepath)
        fp.close()
  • 提取pascalvoc中的摩托车
# pascalvoc类别
pascalvoc_classes = ['aeroplane','bicycle','bird', 'boat', 'bottle',
                    'bus', 'car', 'cat', 'chair', 'cow','diningtable',
                    'dog', 'horse', 'motorbike', 'pottedplant',
                    'sheep', 'sofa', 'train', 'tvmonitor', 'person']

# pascalvoc挑选类别
pascalvoc_class = '\t\t<name>motorbike</name>\n'

# 转换
voc2sc('data/pascalvoc/VOCdevkit/VOC2007/Annotations/', 'data/pascalvoc/VOCdevkit/VOC2007/JPEGImages/',
        'motorbike/JPEGImages/', 'motorbike/Annotations/',
        pascalvoc_classes, pascalvoc_class)
voc2sc('data/pascalvoc/VOCdevkit/VOC2012/Annotations/', 'data/pascalvoc/VOCdevkit/VOC2012/JPEGImages/',
        'motorbike/JPEGImages/', 'motorbike/Annotations/',
        pascalvoc_classes, pascalvoc_class)

with open('motorbike/labels.txt', 'w') as f: 
    f.write('motorbike\n')

print('len datas:', len(os.listdir('motorbike/JPEGImages')))
  • 提取coco2017中的摩托车
# coco2017类别
coco2017_classes = []
with open('coco_category.txt') as f:
    for line in f.readlines():
        coco2017_classes.append(line.strip())

# coco2017挑选类别
coco2017_class = '\t\t<name>motorcycle</name>\n'

# 转换
voc2sc('data/train2017voc/Annotations/', 'data/train2017/',
        'motorbike/JPEGImages/', 'motorbike/Annotations/',
        coco2017_classes, coco2017_class)
voc2sc('data/val2017voc/Annotations/', 'data/val2017/',
        'motorbike/JPEGImages/', 'motorbike/Annotations/',
        coco2017_classes, coco2017_class)

with open('motorbike/labels.txt', 'w') as f: 
    f.write('motorbike\n')

print('len datas:', len(os.listdir('motorbike/JPEGImages')))

5. 将文件路径写入.txt

import os
from tqdm import tqdm
import numpy

def path2txt(images_dir, anno_dir, txt_save_path, split_to_eval=False):
    data = []
    for line in os.listdir(images_dir):
        data.append([os.path.join(images_dir, line), os.path.join(anno_dir, line.replace('jpg', 'xml'))])
    
    if split_to_eval:
        numpy.random.shuffle(data)
        eval_data = data[:int(len(data)/10*2)]
        data = data[int(len(data)/10*2):]
        with open(txt_save_path.replace('train', 'val'), 'w') as f:
            for item in tqdm(eval_data):
                f.write('{} {}\n'.format(item[0], item[1]))

    with open(txt_save_path, 'w') as f:
        for item in tqdm(data):
            f.write('{} {}\n'.format(item[0], item[1]))


path2txt('motorbike/JPEGImages', 'motorbike/Annotations', 'motorbike/train.txt', split_to_eval=True)

三、模型选择与开发

1. 安装paddlex

paddlex使用文档

!pip -q install paddlex==1.3

2. 数据加载与预处理

import os
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

from paddlex.det import transforms
import paddlex as pdx


# 定义训练和验证时的transforms
train_transforms = transforms.Compose([
    transforms.MixupImage(mixup_epoch=250),
    transforms.RandomDistort(),
    transforms.RandomExpand(),
    transforms.RandomCrop(),
    transforms.Resize(target_size=608, interp='RANDOM'),
    transforms.RandomHorizontalFlip(),
    transforms.Normalize(),
])

eval_transforms = transforms.Compose([
    transforms.Resize(target_size=608, interp='CUBIC'),
    transforms.Normalize(),
])

# 定义训练和验证所用的数据集
train_dataset = pdx.datasets.VOCDetection(
    data_dir='./',
    file_list='motorbike/train.txt',
    label_list='motorbike/labels.txt',
    transforms=train_transforms,
    shuffle=True)

eval_dataset = pdx.datasets.VOCDetection(
    data_dir='./',
    file_list='motorbike/val.txt',
    label_list='motorbike/labels.txt',
    transforms=eval_transforms)

3. 模型选择

  • 这里我们选择的模型是YOLOv3-MobileNetV1,其适合于后期边缘端的部署。
  • 详细信息如下:
模型模型大小预测时间(ms/image)BoxAP(%)
YOLOv3-MobileNetV199.2MB11.8349.3

4. 模型训练

  • 注:有时候会报这样的错,请等notebook空闲几十分钟(刚转换完数据会这样)。
# 初始化模型,并进行训练
num_classes = len(train_dataset.labels)
batch_size = 64

model = pdx.det.YOLOv3(num_classes=num_classes, backbone='MobileNetV1')


model.train(
    num_epochs=200,
    train_dataset=train_dataset,
    eval_dataset=eval_dataset,
    train_batch_size=batch_size,
    learning_rate=1e-4,
    warmup_steps=len(train_dataset.file_list)//2,
    save_interval_epochs=50,
    save_dir='output/yolov3_mobilenetv1',
    metric='VOC',
    use_vdl=True,
    early_stop=True)

四、效果展示

1. 模型预测

from paddlex.det import transforms
import paddlex as pdx
import os


# 数据处理
eval_transforms = transforms.Compose([
    transforms.Resize(target_size=608, interp='CUBIC'),
    transforms.Normalize(),
])
# 模型载入
model = pdx.load_model('output/yolov3_mobilenetv1/best_model')
# 结果可视化
for p in os.listdir('example/images'):
    img_path = 'example/images/' + p
    result = model.predict(img_file=img_path, transforms=eval_transforms)
    pdx.det.visualize(image=img_path, result=result, threshold=0.1, save_dir='./visualize')

2. 预测结果可视化

3. 部署模型导出

部署模型导出

!paddlex --export_inference --model_dir=output/yolov3_mobilenetv1/best_model --save_dir=inference_model --fixed_input_shape=[608,608]

五、总结与升华

    1. 由于未拿到硬件,部署部分等待更新~
    1. 目前的电瓶车数据较少,需要用LabelMe标注更多的电瓶车数据。
    1. 更多详细paddlex请访问PaddleX

个人简介

基于YOLOv9实现楼道电梯电动自行车识别检测系统python源码+详细运行教程+训练好的模型+评估指标 【使用教程】 一、环境配置 1、建议下载anaconda和pycharm 在anaconda中配置好环境,然后直接导入到pycharm中,在pycharm中运行项目 anaconda和pycharm安装及环境配置参考网上博客,有很多博主介绍 2、在anacodna中安装requirements.txt中的软件包 命令为:pip install -r requirements.txt 或者改成清华源后再执行以上命令,这样安装要快一些 软件包都安装成功后才算成功 3、安装好软件包后,把anaconda中对应的python导入到pycharm中即可(不难,参考网上博客) 二、环境配置好后,开始训练(也可以训练自己数据集) 1、数据集准备 需要准备yolo格式的目标检测数据集,如果不清楚yolo数据集格式,或者有其他数据训练需求,请看博主yolo格式各种数据集集合链接:https://blog.csdn.net/DeepLearning_/article/details/127276492 里面涵盖了上百种yolo数据集,且在不断更新,基本都是实际项目使用。来自于网上收集、实际场景采集制作等,自己使用labelimg标注工具标注的。数据集质量绝对有保证! 本项目所使用的数据集,见csdn该资源下载页面中的介绍栏,里面有对应的下载链接,下载后可直接使用。 2、数据准备好,开始修改配置文件 参考代码中data文件夹下的banana_ripe.yaml,可以自己新建一个不同名称的yaml文件 train:训练集的图片路径 val:验证集的图片路径 names: 0: very-ripe 类别1 1: immature 类别2 2: mid-ripe 类别3 格式按照banana_ripe.yaml照葫芦画瓢就行,不需要过多参考网上的 3、修改train_dual.py中的配置参数,开始训练模型 方式一: 修改点: a.--weights参数,填入'yolov9-s.pt',博主训练的是yolov9-s,根据自己需求可自定义 b.--cfg参数,填入 models/detect/yolov9-c.yaml c.--data参数,填入data/banana_ripe.yaml,可自定义自己的yaml路径 d.--hyp参数,填入hyp.scratch-high.yaml e.--epochs参数,填入100或者200都行,根据自己的数据集可改 f.--batch-size参数,根据自己的电脑性能(显存大小)自定义修改 g.--device参数,一张显卡的话,就填0。没显卡,使用cpu训练,就填cpu h.--close-mosaic参数,填入15 以上修改好,直接pycharm中运行train_dual.py开始训练 方式二: 命令行方式,在pycharm中的终端窗口输入如下命令,可根据自己情况修改参数 官方示例:python train_dual.py --workers 8 --device 0 --batch 16 --data data/coco.yaml --img 640 --cfg models/detect/yolov9-c.yaml --weights '' --name yolov9-c --hyp hyp.scratch-high.yaml --min-items 0 --epochs 500 --close-mosaic 15 训练完会在runs/train文件下生成对应的训练文件及模型,后续测试可以拿来用。 三、测试 1、训练完,测试 修改detect_dual.py中的参数 --weights,改成上面训练得到的best.pt对应的路径 --source,需要测试的数据图片存放的位置,代码中的test_imgs --conf-thres,置信度阈值,自定义修改 --iou-thres,iou阈值,自定义修改 其他默认即可 pycharm中运行detect_dual.py 在runs/detect文件夹下存放检测结果图片或者视频 【特别说明】 *项目内容完全原创,请勿对项目进行外传,或者进行违法等商业行为! 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用!有问题请及时沟通交流。 2、适用人群:计算机相关专业(如计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网、自动化、电子信息等)在校学生、专业老师或者企业员工下载使用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值