Spark_DAG的生成和划分Stage

DAG介绍

●DAG是什么

DAG(Directed Acyclic Graph有向无环图)指的是数据转换执行的过程,有方向,无闭环(其实就是RDD执行的流程)

原始的RDD通过一系列的转换操作就形成了DAG有向无环图,任务执行时,可以按照DAG的描述,执行真正的计算(数据被操作的一个过程)

●DAG的边界

开始:通过SparkContext创建的RDD

结束:触发Action,一旦触发Action就形成了一个完整的DAG

●注意:

一个Spark应用中可以有一到多个DAG,取决于触发了多少次Action

一个DAG中会有不同的阶段/stage,划分阶段/stage的依据就是宽依赖

一个阶段/stage中可以有多个Task,一个分区对应一个Task

​​​​​​​DAG划分Stage

在这里插入图片描述

●为什么要划分Stage? --并行计算

一个复杂的业务逻辑如果有shuffle,那么就意味着前面阶段产生结果后,才能执行下一个阶段,即下一个阶段的计算要依赖上一个阶段的数据。那么我们按照shuffle进行划分(也就是按照宽依赖就行划分),就可以将一个DAG划分成多个Stage/阶段,在同一个Stage中,会有多个算子操作,可以形成一个pipeline流水线,流水线内的多个平行的分区可以并行执行

●如何划分DAG的stage

对于窄依赖,partition的转换处理在stage中完成计算,不划分(将窄依赖尽量放在在同一个stage中,可以实现流水线计算)

对于宽依赖,由于有shuffle的存在,只能在父RDD处理完成后,才能开始接下来的计算,也就是说需要要划分stage(出现宽依赖即拆分)

●总结

Spark会根据shuffle/宽依赖使用回溯算法来对DAG进行Stage划分,从后往前,遇到宽依赖就断开,遇到窄依赖就把当前的RDD加入到当前的stage/阶段中

Spark中,RDD的执行流程遵循有向无环图(DAG)的方式进行。下面是关于DAG执行流程图生成的步骤: 1. 转换操作:首先,通过RDD的转换操作(例如map、filter、reduce等)定义数据处理的逻辑。这些操作将构建一个RDD转换图。 2. 逻辑优化:Spark会对RDD转换图进行逻辑优化,以提高执行效率。例如,它可能会合并相邻的转换操作或推测执行等。 3. 任务划分Spark会将RDD转换图划分为一系列的阶段(Stage)。每个阶段由一组具有相同父RDD依赖关系的转换操作组成。 4. 任务划分优化:对于每个阶段,Spark会将其划分为一组任务(Task),以便并行执行。任务划分也可以根据数据本地性进行优化,尽量将任务分配给与数据最接近的节点。 5. 任务调度:一旦任务划分完成,Spark会将这些任务提交给集群管理器进行调度,以在集群中的多个节点上并行执行。 6. 依赖关系跟踪:在执行期间,Spark会跟踪RDD之间的依赖关系,并确保所有依赖的转换操作被正确执行。 7. 数据传输和处理:在任务执行期间,Spark将数据从一个节点传输到另一个节点,并对其进行相应的转换操作。 8. 结果返回:一旦所有任务都完成,Spark将结果返回给驱动程序,供进一步处理或输出。 总之,Spark的RDD执行流程图生成步骤涉及转换操作定义、逻辑优化、任务划分、任务划分优化、任务调度、依赖关系跟踪、数据传输和处理以及结果返回。这些步骤确保了高效的分布式数据处理和计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值