基于Pytorch的3D卷积

3D卷积核相比于2D卷积核引入了时间尺度,并且在宽、高、深度(不是单张图像的通道数,这个深度可以理解为帧间)方向上进行滑窗。

在pytorch中,输入数据的维数可以表示为(N,C,D,H,W),其中:N为batch_size,C为输入的通道数,D为深度(D这个维度上含有时序信息),H和W分别是输入图像的高和宽。3维卷积核的维数可以表示为(Cout,C,FD,FH,FW),其中:Cout为输出通道数,(FD,FH,FW)为3维滤波器的尺寸。特别的FD为深度方向的滤波器尺寸,它所关联的是时序信息,FD越大表示在一次滤波过程中考虑到的时序信息越长;FD越小表示在一次滤波过程中考虑到的时序信息越短。输出数据的维数为(N,Cout,Dout,Hout,Wout)

nn.Conv3D(in_channels,out_channels,kernel_size=(FD,FH,FW),stride,padding)

import torch
import torch.nn as nn


x=torch.randn(5,3,10,224,224)
conv = nn.Conv3d(3, 64, kernel_size=(4,3,3), stride=1, padding=1)
print(conv.weight.size())#(64,3,4,3,3)
out=conv(x)
print(out.size())#(5,64,9,224,224)
  • 12
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
【优质项目推荐】 1、品质保证:项目代码均经过严格测试,确保功能稳定且运行ok。您可以放心下载并立即投入使用,若遇到任何问题,随时欢迎您的反馈与交流。 2、适用广泛:无论您是计算机相关专业(如计算机科学、信息安全、数据科学、人工智能、通信、物联网、自动化、电子信息等)的在校学生、专业老师,还是企业员工,都适用。 3、多用途价值:该项目不仅具有很高的学习借鉴价值,对于初学者来说,是入门进阶的绝佳选择;当然也可以直接用于 毕业设计、课程设计、期末大作业或项目初期立项演示等。 3、开放创新:如果您有一定基础,且热爱探索钻研,那该项目代码更是您发挥创意、实现新功能的起点。可以基于此代码进行修改、扩展,创造出属于自己的独特应用。 欢迎下载使用优质资源!欢迎交流学习,欢迎借鉴引用,共同探索编程的无穷魅力! 基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip 基于pytorch实现3D卷积神经网络模型对CT扫描3D医疗图像分类识别python源码+项目说明+数据集+详细注释.zip
以下是基于PyTorch实现的3D DenseNet代码示例: ```python import torch import torch.nn as nn import torch.nn.functional as F class Bottleneck(nn.Module): def __init__(self, in_channels, growth_rate): super(Bottleneck, self).__init__() self.bn1 = nn.BatchNorm3d(in_channels) self.conv1 = nn.Conv3d(in_channels, 4 * growth_rate, kernel_size=1, bias=False) self.bn2 = nn.BatchNorm3d(4 * growth_rate) self.conv2 = nn.Conv3d(4 * growth_rate, growth_rate, kernel_size=3, padding=1, bias=False) def forward(self, x): out = self.conv1(F.relu(self.bn1(x))) out = self.conv2(F.relu(self.bn2(out))) out = torch.cat([out, x], 1) return out class DenseBlock(nn.Module): def __init__(self, in_channels, growth_rate, num_layers): super(DenseBlock, self).__init__() self.layers = nn.ModuleList([Bottleneck(in_channels + i * growth_rate, growth_rate) for i in range(num_layers)]) def forward(self, x): for layer in self.layers: x = layer(x) return x class Transition(nn.Module): def __init__(self, in_channels, out_channels): super(Transition, self).__init__() self.bn = nn.BatchNorm3d(in_channels) self.conv = nn.Conv3d(in_channels, out_channels, kernel_size=1, bias=False) self.pool = nn.AvgPool3d(kernel_size=2, stride=2) def forward(self, x): out = self.conv(F.relu(self.bn(x))) out = self.pool(out) return out class DenseNet3D(nn.Module): def __init__(self, growth_rate=32, block_config=(6, 12, 24, 16), num_classes=100): super(DenseNet3D, self).__init__() self.conv1 = nn.Conv3d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm3d(64) self.pool1 = nn.MaxPool3d(kernel_size=3, stride=2, padding=1) self.dense1 = DenseBlock(64, growth_rate, block_config[0]) self.trans1 = Transition(256, 128) self.dense2 = DenseBlock(128, growth_rate, block_config[1]) self.trans2 = Transition(512, 256) self.dense3 = DenseBlock(256, growth_rate, block_config[2]) self.trans3 = Transition(1024, 512) self.dense4 = DenseBlock(512, growth_rate, block_config[3]) self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) self.fc = nn.Linear(1024, num_classes) def forward(self, x): out = self.conv1(x) out = self.bn1(out) out = F.relu(out) out = self.pool1(out) out = self.dense1(out) out = self.trans1(out) out = self.dense2(out) out = self.trans2(out) out = self.dense3(out) out = self.trans3(out) out = self.dense4(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out ``` 这个代码实现了一个3D DenseNet模型,与2D DenseNet相似,但在处理3D数据时使用了3D卷积3D池化操作。模型中的Bottleneck、DenseBlock、Transition和DenseNet部分与2D版本相同,只是相关操作被调整为适应3D数据。在实现过程中,我们使用了PyTorch提供的3D版本的各种模块和函数,如nn.BatchNorm3d、nn.Conv3d、nn.AvgPool3d、nn.AdaptiveAvgPool3d等,这些工具和接口可用于构建和训练3D DenseNet模型。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值