【DR_CAN-高级控制笔记】03.相图和相轨迹_Phase Portrait

目录

相图 相轨迹

phase portrait. 分析微分方程解的一种方法。

有一个非线性的系统,如下所示。

image-20240224124201134

其相图如下所示。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

1-D场景下

在1-D场景下,分析 x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x)可以得知。

image-20240224124701540

​ 分析过程如下,首先由 x ˙ = 0 \dot{x}=0 x˙=0确定一下要分析的平衡点 x 01 x_{01} x01 x 02 x_{02} x02。然后观察两个平衡点附近 x ˙ \dot{x} x˙的正负值继而判断x的变化趋势,如果两边都是往平衡点靠近的,那么这个平衡点可以说是稳定的,如果两边都是远离平衡点的,那么这个平衡点可以说是不稳定的。

​ 同理,运用上述分析过程去分析 x ˙ = x − c o s x \dot{x}=x-cosx x˙=xcosx可以得知。

image-20240224124808656
x ˙ = 0 为平衡点 x ˙ > 0 靠近平衡点 x ˙ < 0 远离平衡点 \dot{x}=0为平衡点\\ \dot{x}>0靠近平衡点\\ \dot{x}<0远离平衡点 x˙=0为平衡点x˙>0靠近平衡点x˙<0远离平衡点

2-D场景下

image-20240224125122912

image-20240224140552980

image-20240224125405049

General Form一般场景下

一个例子

image-20240224140931115

​ 根据A求出特征值和特征向量

image-20240224141022165

​ 继而得到x,y的表达式

image-20240224141135539

​ 可以看到,做了变换之后P之后,并不影响系统的性质,故而通过 λ \lambda λ可以直接判断系统的性质。

另一个例子

image-20240224141409720

image-20240224141517455

image-20240224141535104

image-20240224141608711

在一个例子

image-20240224141752298

总结

image-20240224141903805

image-20240224141936926

[!NOTE]

​ 系统稳定的前提条件: λ 1 \lambda_1 λ1, λ 2 \lambda_2 λ2 小于0 或者实部小于0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

后厂村路小狗蛋

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值