目录
相图 相轨迹
phase portrait. 分析微分方程解的一种方法。
有一个非线性的系统,如下所示。
其相图如下所示。
1-D场景下
在1-D场景下,分析 x ˙ = f ( x ) \dot{x}=f(x) x˙=f(x)可以得知。
分析过程如下,首先由 x ˙ = 0 \dot{x}=0 x˙=0确定一下要分析的平衡点 x 01 x_{01} x01和 x 02 x_{02} x02。然后观察两个平衡点附近 x ˙ \dot{x} x˙的正负值继而判断x的变化趋势,如果两边都是往平衡点靠近的,那么这个平衡点可以说是稳定的,如果两边都是远离平衡点的,那么这个平衡点可以说是不稳定的。
同理,运用上述分析过程去分析 x ˙ = x − c o s x \dot{x}=x-cosx x˙=x−cosx可以得知。
x
˙
=
0
为平衡点
x
˙
>
0
靠近平衡点
x
˙
<
0
远离平衡点
\dot{x}=0为平衡点\\ \dot{x}>0靠近平衡点\\ \dot{x}<0远离平衡点
x˙=0为平衡点x˙>0靠近平衡点x˙<0远离平衡点
2-D场景下
General Form一般场景下
一个例子
根据A求出特征值和特征向量
继而得到x,y的表达式
可以看到,做了变换之后P之后,并不影响系统的性质,故而通过 λ \lambda λ可以直接判断系统的性质。
另一个例子
在一个例子
总结
[!NOTE]
系统稳定的前提条件: λ 1 \lambda_1 λ1, λ 2 \lambda_2 λ2 小于0 或者实部小于0