【小组专题四点五:素数】素数的分布,素数定理,素数猜想与兰道问题

3.2 素数的分布与猜想

  • π ( x ) \pi(x) π(x) 的近似估计函数

    • 1798年,法国数学家勒让德通过 J u r i j      V e g a Jurij\;\;Vega JurijVega 计算到400031的素数表

      得到了 π ( x ) ≈ x log ⁡ x − 1.08366 \pi(x)\approx \frac{x}{\log x-1.08366} π(x)logx1.08366x

    • 高斯猜测 π ( x ) \pi(x) π(x) 的增长速率和下面的函数是相同的:

      x log ⁡ x \frac{x}{\log x} logxx L i ( x ) = ∫ 2 x d t log ⁡ t Li(x)=\int_2^x\frac{dt}{\log t} Li(x)=2xlogtdt

    • 1850年,俄国数学家切比雪夫第一个实质性证明了 π ( x ) \pi(x) π(x) 可以用 x log ⁡ x \frac{x}{\log x} logxx 来近似表示。

      他证明了 $\exist C_1,C_2\in R,\ C_1<1<C_2,\ s.t.\ $
      C 1 x log ⁡ x < π ( x ) < C 2 x log ⁡ x C_1\frac{x}{\log x}<\pi(x)<C_2\frac{x}{\log x} C1logxx<π(x)<C2logxx

  • 素数定理:对于足够大的 x x x 都成立。随着 x x x 的增长, x log ⁡ x \frac{x}{\log x} logxx 的比的极限为 1 1 1

    • lim ⁡ x → ∞ π ( x ) x log ⁡ x = 1 \frac{\underset{x\rightarrow\infin}{\lim}\pi(x)}{\frac{x}{\log x}} = 1 logxxxlimπ(x)=1 π ( x ) ∼ x log ⁡ x \pi(x)\sim \frac{x}{\log x} π(x)logxx
    • 在1896年被发过数学家阿达玛和比利时数学家德·拉·瓦雷-普桑分别独立地给出证明
      • 他们将 π ( x ) \pi(x) π(x) ζ ( s ) \zeta(s) ζ(s) 联系起来。
      • ζ ( s ) = ∑ ∞ n = 1 1 n s \zeta(s)=\underset{n=1}{\overset{\infin}{\sum}}\frac{1}{n^s} ζ(s)=n=1ns1
      • ζ ( s ) = ∑ ∞ n = 1 1 n s = ∏ p ( 1 − 1 p s ) − 1 \zeta(s)=\underset{n=1}{\overset{\infin}{\sum}}\frac{1}{n^s}=\underset{p}{\prod}(1-\frac{1}{p^s})^{-1} ζ(s)=n=1ns1=p(1ps1)1
        • 其中 p p p 取遍所有的素数。
      • 德·拉·瓦雷-普桑证明了对于所有的常数 a a a ,函数 L i ( x ) Li(x) Li(x) x log ⁡ x − a \frac{x}{\log x-a} logxax 更接近 π ( x ) \pi(x) π(x)
    • 1949年,挪威数学家塞尔伯格和匈牙利数学家爱尔迪西分别给出了素数定理的初等证明。
  • 素数的分部间隔

    • 存在任意长的连续正整数序列不含有素数
    • 构造方法: ( n + 1 ) ! + 2 ,   ( n + 1 ) ! + 3 , ⋯   , ( n + 1 ) ! + ( n + 1 ) (n+1)!+2,\ (n+1)!+3,\cdots,(n+1)!+(n+1) (n+1)!+2, (n+1)!+3,,(n+1)!+(n+1)
    • 易得每一项都是合数。 n n n 可以取无穷大。
  • 关于素数的猜想等

    • 伯兰特公设
      • 1845年,法国数学家伯兰特猜想:
      • ∀ n ∈ Z + ,   ∃   p ,   p   i s   a   p r i m e , s . t .   n < p < 2 n \forall n\in \mathbb{Z}^+,\ \exist\ p,\ p\ is\ a\ prime,s.t.\ n<p<2n nZ+,  p, p is a prime,s.t. n<p<2n
      • 该 猜想第一个证明:1852年由切比雪夫给出
    • 孪生素数猜想
      • 存在无穷多的形如 p p p p + 2 p+2 p+2 的素数对。
      • 2016年计算出的最大的孪生素数为 2 , 996 , 863 , 034 , 895 × 2 1 , 290 , 000 ± 1 2,996,863,034,895\times2^{1,290,000}\pm1 2,996,863,034,895×21,290,000±1
    • 三胞胎素数 三胞胎素数
      • A类三胞胎素数,构成为 { p , p + 2 , p + 6 } \{p,p+2,p+6\} {p,p+2,p+6}
      • B类三胞胎素数,构成为 { p , p + 4 , p + 6 } \{p,p+4,p+6\} {p,p+4,p+6}
      • p > 3 p>3 p>3 是,形如 { p , p + 2 , p + 4 } \{p,p+2,p+4\} {p,p+2,p+4} 的数组不可能是三胞胎素数。
    • Brun 常数(布朗常数)布朗常数
      • 1919年,挪威数学家维果·布朗 证明了所有孪生素数的倒数之和收敛域一个数学常数,称作 Brun’s constant, D D . B 2 DD.B_2 DD.B2
      • B 2 = ∑ p   a n d   p + 2   a r e   b o t h   p r i m e s ( 1 p + 1 p + 2 ) B_2=\underset{p\ and\ p+2\ are\ both\ primes}{\sum}(\frac{1}{p}+\frac{1}{p+2}) B2=p and p+2 are both primes(p1+p+21)
      • 近似值为 1.9021605824 1.9021605824 1.9021605824
    • 四胞胎素数的布朗常量 四胞胎素数
    • 四胞胎素数是指符合以下形式的素数 { p , p + 2 , p + 6 , p + 8 } \{p,p+2,p+6,p+8\} {p,p+2,p+6,p+8}
    • B 4 B_4 B4 = 所有四胞胎素数的倒数之和
    • 近似值为 B 4 ≈ 0.87058838 B_4\approx 0.87058838 B40.87058838
    • 表兄弟素数(或远亲素数) Knowpia链接
      • 形如 { p , p + 4 } \{p,p+4\} {p,p+4} 的素数对
        在这里插入图片描述
      • B 4 = ∑ p   a n d   p + 4   a r e   b o t h   p r i m e s ( 1 p + 1 p + 4 ) B_4=\underset{p\ and\ p+4\ are\ both\ primes}{\sum}(\frac{1}{p}+\frac{1}{p+4}) B4=p and p+4 are both primes(p1+p+41)
      • 近似值为 B 4 ≈ 1.1970449 B_4\approx 1.1970449 B41.1970449
    • 六素数 六素数
      • 指形如 { p , p + 6 } \{p,p+6\} {p,p+6} 的素数对在这里插入图片描述

      • 六素数三元组

        • 指素数三元组 { p , p + 6 , p + 12 } \{p,p+6,p+12\} {p,p+6,p+12} 并使得 p + 18 p+18 p+18 是合数。在这里插入图片描述
        • 六素数三元组中间一定是平衡素数。
      • 六素数四元组

        • 指素数四元组 { p , p + 6 , p + 12 , p + 18 } \{p,p+6,p+12,p+18\} {p,p+6,p+12,p+18} 在十进制下只能以最后一位为1的素数开始(除去 p = 5 p=5 p=5 的四元组)
        • 六素数四元组中间的两个一定都是平衡素数在这里插入图片描述
      • 六素数五元组

        • 指素数五元组 { p , p + 6 , p + 12 , p + 18 , p + 24 } \{p,p+6,p+12,p+18,p+24\} {p,p+6,p+12,p+18,p+24}
        • 只有一组,为 { 5 , 11 , 17 , 23 , 29 } \{5,11,17,23,29\} {5,11,17,23,29}
        • 证明:必有一项被 5 5 5 整除。
    • 兰道问题
      • 包括哥德巴赫猜想、孪生素数猜想、 n 2 + 1 n^2+1 n2+1 猜想以及勒让德猜想。
    • 素数等差数列的厄尔多斯猜想
      • 对任意的正整数 n ≥ 3 n\ge3 n3, 有一个由素数组成的长度为 n n n 的等差数列。
      • Green-Tao 定理
        • 2006年 Ben Green 和陶哲轩证明了该猜想。
    • 哥德巴赫猜想
      • 每个大于 2 2 2 的正偶数可以写成两个素数的和。
      • 现已验证所有小于 1 0 18 10^{18} 1018 的偶数满足这个猜想。
      • 这个猜想的证明没人给出。至今为止最好的结果是陈景润证明出了,每个足够大的偶数可以写成一个素数和一个之多由两个素数的乘积得到的数的和。
    • n 2 + 1 n^2+1 n2+1 猜想
      • 存在无穷多个形如 n 2 + 1 n^2+1 n2+1 的素数,其中 n n n 是正整数。
      • 至今为止最好的结果是 Henryk Iwaniec 证明出了存在无穷多个 n n n 使得 n 2 + 1 n^2+1 n2+1 是素数或者是两个素数的乘积。
    • 勒让德猜想
      • 每两个连续的整数的平方之间必有一个素数。
      • 数值表明对于 n ≤ 1 0 18 n\le 10^{18} n1018 n 2 n^2 n2 ( n + 1 ) 2 (n+1)^2 (n+1)2 之间均存在一个素数。
      • Ingham 曾经证明对于足够大的 n n n n 3 n^3 n3 ( n + 1 ) 3 (n+1)^3 (n+1)3 之间必有一素数。
  • 平衡素数

    • 平衡素数是指上下具有相等大小素数间隔的素数。

关于质数,许多网站都可以查到有许多其他特殊性质的质数。

由于条目实在是太多了,这里就放一下自己找到的资源吧!

质数列表

万维百科-质数

维基百科-prime

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值