统计素数并求和_黎曼猜想之零点分布与素数分布

b75c04e50fd44d038394a4ccc9951c5e.gif

素数的分布与 Riemann ζ 函数之间存在着深刻关联。这一关联的核心就是J(x) = Σn[(1/n)π(x1/n)]的积分表达式。由于 Riemann ζ 函数具有极为复杂的性质,这一积分同样也是极为复杂的。为了对这一积分做进一步的研究, Riemann 引进了一个辅助函数 ξ(s)[注一]

ξ(s) = Γ(s/2+1) (s-1) π-s/2 ζ(s)

引进这样一个辅助函数有什么好处呢?首先,由上式定义的辅助函数可以被证明为是整函数 (entire function),即在复平面上所有 s≠∞ 的点上都解析的函数。这样的函数在性质上要比 Riemann ζ 函数简单得多,处理起来也容易得多。事实上,在所有非平庸的复变函数中,整函数是解析区域最为宽广的 (解析区域比它更大,即包括 s=∞,的函数只有一种,那就是常数函数)。这是引进 ξ(s) 的好处之一。

其次,利用这一辅助函数,我们提到过的 Riemann ζ 函数所满足的代数关系式 ζ(s) = 2Γ(1-s)(2π)s-1sin(πs/2)ζ(1-s) 可以表述为一个对于 s 与 1-s 对称的简单形式:ξ(s) = ξ(1-s)。这是引进 ξ(s) 的好处之二。

此外,从 ξ(s)的定义中不难看到, ξ(s) 的零点必定是 ζ(s) 的零点[注二]。另一方面, ζ(s) 的零点除了平凡零点 s=-2n (n 为自然数) 由于恰好是 Γ(s/2+1) 的极点,因而不是 ξ(s) 的零点外,其余全都是 ξ(s) 的零点,因此ξ(s) 的零点与 Riemann ζ 函数的非平凡零点相重合。换句话说, ξ(s) 将 Riemann ζ 函数的非平凡零点从全体零点中分离了出来。这是引进 ξ(s) 的好处之三。

在进一步介绍 Riemann 的论文之前,让我们先提一下 Riemann ζ 函数的一个简单性质,即 ζ(s) 在 Re(s)>1 的区域内没有零点 (证明参阅附录一)。没有零点当然就更没有非平凡零点,而后者跟 ξ(s) 的零点是重合的,因此上述性质表明 ξ(s) 在 Re(s)>1 的区域内也没有零点;又由于 ξ(s)=ξ(1-s),因此 ξ(s) 在 Re(s)<0 的区域内也没有零点。这表明 ξ(s) 的所有零点——从而也就是 Riemann ζ 函数的所有非平凡零点——都位于 0≤Re(s)≤1 的区域内。由此我们得到了一个有关 Riemann ζ 函数零点分布的重要结果,那就是:Riemann ζ 函数的所有非平凡零点都位于复平面上 0≤Re(s)≤1 的区域内。这一结果虽然离 Riemann 猜想要求的所有非平凡零点都位于复平面上 Re(s)=1/2 的直线上还相距甚远,但起码也算是万里长征的第一步。

好了,现在回到 Riemann 的论文中来。引进了 ξ(s) 之后, Riemann 便用 ξ(s) 的零点对 lnξ(s) 进行了分解:

lnξ(s) = lnξ(0) + Σρln(1-s/ρ)

其中 ρ 为 ξ(s) 的零点 (也就是 Riemann ζ 函数的非平凡零点——这些家伙终于出场了!)。分解式中的求和对所有的 ρ 进行,并且是以先将 ρ 与 1-ρ

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值