种群大小与logistic方程

种群的指数增长: N ′ = r ⋅ N 0 , N 0 为种群初始大小 N'=r\cdot N_{0},N_{0}为种群初始大小 N=rN0N0为种群初始大小
积分:
(1) l n ( N t ) = r + C ,量纲: r = 1 t i m e ln(N_{t})=r+C,量纲:r=\frac{1}{time} ln(Nt)=r+C,量纲:r=time1
(2)去量纲: l n ( N t ) = r t + C ,量纲: r t = t i m e ⋅ 1 t i m e = 1 ln(N_{t})=rt+C,量纲:rt=time\cdot\frac{1}{time}=1 ln(Nt)=rt+C,量纲:rt=timetime1=1
(3)积分式: N t = e r t + C = e r t ⋅ e C N_{t}=e^{rt+C}=e^{rt}\cdot e^C Nt=ert+C=erteC
(4)设 e C e^C eC为常数 C 0 C_{0} C0,即 e C = C 0 e^C=C_{0} eC=C0,则有:
N t = C 0 ⋅ e r t N_{t}=C_{0}\cdot e^{rt} Nt=C0ert
即种群在经过 t t t时间后的种群大小 N t N_{t} Nt与种群初始大小 C 0 C_{0} C0 e r t e^{rt} ert倍关系,种群大小 N N N随时间 t t t呈指数增长,可视化为:
种群的指数增长
这是在没有资源限制下的种群增长。现在引入资源限制条件(以空间资源为例),可获得在剩余空间资源为 x x x 时,实际增长率 r a r_{a} ra r r r 之间的函数关系: r a = f ( r , x ) r_{a}=f(r,x) ra=f(r,x)
其中 x i = A i A x_{i}=\frac{Ai}{A} xi=AAi,为 x x x i i i 时刻的值, A i A_{i} Ai i i i 时刻的可用空间资源, A A A 为初始可用空间资源。
另外, x x x 标准化(指数化)的复数形式: I n d e x = x i − x m i n x m a x − x m i n Index=\frac{x_{i}-x_{min}}{x_{max}-x_{min}} Index=xmaxxminxixmin
推论:
(1) x → 0 时,有 r a → 0 x\rightarrow0时,有r_{a}\rightarrow 0 x0时,有ra0
(2) x → 1 时,有 r a → r x\rightarrow1时,有r_{a}\rightarrow r x1时,有rar
(3) r a 与 x 呈正相关 r_{a}与x呈正相关 rax呈正相关
所以可用根据推论(3)建立 x x x r a r_{a} ra 的函数关系,根据奥卡姆剃刀原则(如无必要,不加实体): r a = r ⋅ x r_{a}=r\cdot x ra=rx
r a = f ( r , x ) = r ⋅ x r_{a}=f(r,x)=r\cdot x ra=f(r,x)=rx
现在重新思考 x x x ~ N N N间的关系:
∵ r a 与 x 呈线性正相关,且 N 与 r a 呈指数正相关 \because r_a与x呈线性正相关,且N与r_{a}呈指数正相关 rax呈线性正相关,且Nra呈指数正相关
∴ N 与 x 呈正相关关系 \therefore N与x呈正相关关系 Nx呈正相关关系
引入特定系数 − β -\beta β,其量纲为 1 N \frac{1}{N} N1(种群大小量纲的倒数),建立 x x x ~ N N N 的函数关系:
x ′ = − β ⋅ N ′ ,此即动力系统( D y n a m i c s y s t e m ) x'=-\beta \cdot N',此即动力系统(Dynamic system) x=βN,此即动力系统(Dynamicsystem
积分后:
x = C 0 − β N x=C_{0}-\beta N x=C0βN
整理几个相互关联的函数:
{ 函数 1 : r a = r ⋅ x 函数 2 : x = C 0 − β N 函数 3 : N ′ = r a ⋅ N \begin{cases}函数1:&r_{a}=r\cdot x\\函数2:&x=C_{0}-\beta N\\函数3:&N'=r_{a}\cdot N\end{cases} 函数1函数2函数3ra=rxx=C0βNN=raN
将函数1 → \rightarrow 函数3: N ′ = r ⋅ x ⋅ N N'=r\cdot x\cdot N N=rxN(函数4)
将函数2 → \rightarrow 函数4: N ′ = r ( C 0 − β N ) ⋅ N N'=r(C_{0}-\beta N)\cdot N N=r(C0βN)N

引入参数 K K K(Carring capacity,种群容纳量),即 K = M a x ( N ) K=Max(N) K=Max(N),故K的量纲与N的量纲相同也为#(种群大小)
∵ \because N = 0 N=0 N=0时,根据函数2有 x = C 0 = 1 x=C_{0}=1 x=C0=1
∴ \therefore 带入: N ′ = r ( 1 − β ⋅ N ) N N'=r(1-\beta\cdot N)N N=r(1βN)N
且当 N t = K N_{t}=K Nt=K时,有 x = A t A = 0 x=\frac {A_{t}}{A}=0 x=AAt=0,即 0 = C 0 − β ⋅ K 0=C_{0}-\beta\cdot K 0=C0βK
∴ \therefore 解得:
β = − C 0 K \beta=-\frac{C_{0}}{K} β=KC0
β = − C 0 K \beta=-\frac{C_{0}}{K} β=KC0带入 N ′ = r ( C 0 − β ⋅ N ) N N'=r(C_{0}-\beta\cdot N)N N=r(C0βN)N得:
N ′ = r ⋅ N ( 1 − N K ) = r ⋅ N − r ⋅ N 2 K N'=r\cdot N(1-\frac{N}{K})=r\cdot N-\frac{r\cdot N^2}{K} N=rN(1KN)=rNKrN2
这就是著名的逻辑斯蒂方程(Logistic Equation),且 N N N N ′ N' N 的函数图像是一个开口向下的圆锥曲线:
逻辑斯遆曲线
∴ 当 N = − b 2 a 时, N ′ 最大 \therefore 当N=-\frac{b}{2a}时,N'最大 N=2ab时,N最大
N = K 2 ,(收获理论) N=\frac{K}{2},(收获理论) N=2K,(收获理论)

求逻辑斯蒂方程的积分式:
N ′ = r ⋅ N ( 1 − N K ) N'=r\cdot N(1-\frac{N}{K}) N=rN(1KN)
分离变量得: N ′ = r K ( K − N ) N N'=\frac{r}{K}(K-N)N N=Kr(KN)N,等价于:
r K = N ′ ( K − N ) N \frac{r}{K}=\frac{N'}{(K-N)N} Kr=(KN)NN
另有: 1 N + 1 K − N = K N ( K − N ) \frac{1}{N}+\frac{1}{K-N}=\frac{K}{N(K-N)} N1+KN1=N(KN)K,等式两边同时乘 N ′ N' N并与 r K = N ′ ( K − N ) N \frac{r}{K}=\frac{N'}{(K-N)N} Kr=(KN)NN联立得:
{ N ′ N + N ′ K − N = K ⋅ N ′ N ( K − N ) r K = N ′ N ⋅ ( K − N ) \begin{cases}&\frac{N'}{N}+\frac{N'}{K-N}=\frac{K\cdot N'}{N(K-N)} \\&\frac{r}{K}=\frac{N'}{N\cdot(K-N)}\end{cases} {NN+KNN=N(KN)KNKr=N(KN)N
接得:
N ′ N + N ′ K − N = r \frac{N'}{N}+\frac{N'}{K-N}=r NN+KNN=r
积分得:
l n ( N ) − l n ( K − N ) = r ⋅ t + C 0 ln(N)-ln(K-N)=r\cdot t+C_{0} ln(N)ln(KN)=rt+C0
l n ( N K − N ) = r ⋅ t + C 0 ln(\frac{N}{K-N})=r\cdot t+C_{0} ln(KNN)=rt+C0
N K − N = e r ⋅ t + C 0 = e r ⋅ t ⋅ e C 0 \frac{N}{K-N}=e^{r\cdot t+C_{0}}=e^{r\cdot t}\cdot e^{C_{0}} KNN=ert+C0=erteC0
现在使 b 0 = e C 0 b_{0}=e^{C_{0}} b0=eC0
N K − N = b 0 ⋅ e r ⋅ t \frac{N}{K-N}=b_{0}\cdot e^{r\cdot t} KNN=b0ert
整理化简得:
N t = K ⋅ b 0 e − r ⋅ t + b 0 N_{t}=\frac{K\cdot b_{0}}{e^{-r\cdot t}+b_{0}} Nt=ert+b0Kb0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Odd_guy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值