[我的OpenCV学习日志]-3 2021/20/25

一、数值计算

#数值计算
img_flower = cv2.imread('D:/flower.jpg')
img_flower2 = img_flower + 10 #每个像素点上都加10
img_flower[:5,:,0]#只取前五行
array([[255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255],
       [255, 255, 255, ..., 255, 255, 255]], dtype=uint8)
img_flower2[:5,:,0]   #像素点的值的范围是0—255
array([[9, 9, 9, ..., 9, 9, 9],
       [9, 9, 9, ..., 9, 9, 9],
       [9, 9, 9, ..., 9, 9, 9],
       [9, 9, 9, ..., 9, 9, 9],
       [9, 9, 9, ..., 9, 9, 9]], dtype=uint8)

二、图像融合

img_flower.shape #(500,500,3)
img_fish = cv2.imread('D:/fish.jpg')
img_fish.shape #(683,1024,3)
img_fish = cv2.resize(img_fish,(500,500)) #变换图像大小
img_fish.shape #(500,500,3)
result = cv2.addWeighted(img_flower,0.4,img_fish,0.6,gamma = 0) #图片后面的数字代表每张图片的权重,gamma为修正系数,不需要修正设置为0
plt.imshow(result)

res = cv2.resize(img_flower,(0,0),fx = 1,fy = 3)  #通过改变宽和高的倍数来调整图像的大小(fx表示宽,fy表示高)
plt.imshow(res)

 

三、图像阈值

ret,det = cv2.threshold(src,thresh,maxval,type)

1.src:输入图,只能输入单通道图像,通常来说为灰度图

2.dst:输出图

3.thresh:阈值

4.maxval:当像素值超过了阈值(或小于阈值,根据type来决定),所赋予的值

5.type:二值化操作的类型,包含以下5种类型:cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO; cv2.THRESH_TOZERO_INV

6.cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0

7.cv2.THRESH_BINARY_INV THRESH_BINARY的反转

8.THRESH_TRUNC 大于阈值部分设为阈值,否则不变

9.cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0

10.cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转

img_grey = cv2.imread('D:/flower.jpg',cv2.IMREAD_GRAYSCALE)
ret,thresh1 = cv2.threshold(img_grey,127,255,cv2.THRESH_BINARY)
ret,thresh2 = cv2.threshold(img_grey,127,255,cv2.THRESH_BINARY_INV)
ret,thresh3 = cv2.threshold(img_grey,127,255,cv2.THRESH_TRUNC)
ret,thresh4 = cv2.threshold(img_grey,127,255,cv2.THRESH_TOZERO)
ret,thresh5 = cv2.threshold(img_grey,127,255,cv2.THRESH_TOZERO_INV)
titles = ['original image','binary','binary_inv','trunc','tozero','tozero_inv']
images = [img_grey,thresh1,thresh2,thresh3,thresh4,thresh5]
for i in range(6):
    plt.subplot(2,3,i+1),plt.imshow(images[i],'gray')
    plt.title(titles[i])
    plt.xticks([]),plt.yticks([])
plt.show

四、图像平滑处理

对图像数据进行各种滤波操作

原图展示:

import cv2
imgs = cv2.imread('D:/zhouyu.jpg')
cv2.imshow('imgs',imgs)
cv2.waitKey(0)
cv2.destroyAllWindows()

(1)均值滤波

#均值滤波
#简单的平均卷积操作
blur = cv2.blur(imgs,(3,3))
cv2.imshow('blur',blur)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

(2)方框滤波

#方框滤波
#基本和均值一样,可以选择归一化
box = cv2.boxFilter(imgs,-1,(3,3),normalize = True)
cv2.imshow('box',box)
cv2.waitKey(0)
cv2.destroyAllWindows()

#方框滤波
#基本和均值一样,可以选择归一化,容易越界
box = cv2.boxFilter(imgs,-1,(3,3),normalize = False)

cv2.imshow('box',box)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

(3)高斯滤波

#高斯滤波
#高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(imgs,(5,5),1)

cv2.imshow('aussian',aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()

(4)中值滤波

#中值滤波

median = cv2.medianBlur(imgs,5)

cv2.imshow('median',median)
cv2.waitKey(0)
cv2.destroyAllWindows()

#展示所有图片
import numpy as np
res = np.hstack((blur,aussian,median))
print(res)
cv2.imshow('res',res)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

五、形态学操作

(一)腐蚀操作

原图展示:

import cv2
img_fushi = cv2.imread('D:/fushi2.jpg')
cv2.imshow('img_fushi',img_fushi)
cv2.waitKey(0)
cv2.destroyAllWindows()

import numpy as np
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(img_fushi,kernel,iterations = 1)
cv2.imshow('erosion',erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

 

 (二)膨胀操作

import cv2
img_fushi = cv2.imread('D:/fushi2.jpg')
cv2.imshow('img_fushi',img_fushi)
cv2.waitKey(0)
cv2.destroyAllWindows()
import numpy as np
kernel = np.ones((5,5),np.uint8)
erosion = cv2.erode(img_fushi,kernel,iterations = 1)
cv2.imshow('erosion',erosion)
cv2.waitKey(0)
cv2.destroyAllWindows()

kernel = np.ones((3,3),np.uint8)
img_dilate = cv2.dilate(erosion,kernel,iterations = 2)
cv2.imshow('img_dilate',img_dilate)
cv2.waitKey(0)
cv2.destroyAllWindows()

(三)开运算与闭运算

开运算:先腐蚀,再膨胀

毕运算:先膨胀,再腐蚀

#开运算
import cv2
import numpy as np
img = cv2.imread('D:/fushi2.jpg')
kernel = np.ones((5,5),np.uint8)
opening = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel)
cv_show('opening',opening)

#闭运算
import cv2
import numpy as np
img = cv2.imread('D:/fushi2.jpg')
kernel = np.ones((5,5),np.uint8)
closing = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel)
cv_show('closing',closing)

 

 六、梯度运算

梯度 = 膨胀 - 腐蚀

import cv2
import numpy as np
img = cv2.imread('D:/fushi2.jpg')
kernel = np.ones((5,5),np.uint8)
dilate = cv2.dilate(img,kernel,iterations = 5) #膨胀操作
erosion = cv2.erode(img,kernel,iterations = 5) #腐蚀操作
res = np.hstack((dilate,erosion))
cv_show('res',res)

gradient = cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel)

cv_show('gradient',gradient)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值