YOLOv5使用训练自己的数据集

本文将拆解每一步YOLOv5的每一步,并将其部署到C#之中

一、获取YOLOv5(后面为方便直接写作YOLO)

获取链接:YOLOv5

二、训练YOLO

1、使用命令创建YOLO环境

在Anaconda Prompt中执行

conda create -n yolo python=3.8 

2、进入YOLO环境

在这里插入图片描述

3、进入下载好的YOLO的文件夹,可以看到requirement.txt文件,里面就是YOLO需要的库

在这里插入图片描述
进入该文件夹后,输入指令下载对应的库。

pip install -r requirements.txt

在这里插入图片描述
(补充:如果下不动可能需要换一下国内的镜像源:如清华、中科院等)

4、使用labelImg工具进行图片的标注工作

方法1:直接去官网下:链接在此:标注工具labelImg

放法2:使用指令安装

pip install labelimg

安装完后直接输入labelimg就能直接使用工具

基本设置

使用Open Dir来选择需要修改的图片文件夹
在这里插入图片描述
右上角有一个默认标签,我这里因为只检测一种,所以就选上了。
在这里插入图片描述
点击Change Save Dir选择txt保存的结果
在这里插入图片描述
注意这里要改成YOLO模式,不然数据格式不对。
在这里插入图片描述

开始框图

这里列出了labelimg中使用的一些快捷键,其实主要就是wad三个快捷键
w: 创造框
a:前一张图片
d:下一张图片

Ctrl + u	Load all of the images from a directory
Ctrl + r	Change the default annotation target dir
Ctrl + s	Save
Ctrl + d	Copy the current label and rect box
Ctrl + Shift + d	Delete the current image
Space	Flag the current image as verified
w	Create a rect box
d	Next image
a	Previous image
del	Delete the selected rect box
Ctrl++	Zoom in
Ctrl--	Zoom out
↑→↓← | Keyboard arrows to move selected rect box
5、 创建yaml文件

最后数据集的结构如图所示
在这里插入图片描述

直接创建一个txt文件,然后把后缀改成yaml就行。

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/defect  # dataset root dir
train: images/defect  # train images (relative to 'path') 128 images
val: images/defect  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
names:
  0: defect

6、进入YOLO文件夹,使用train.py开始训练本地训练集
还有一些要处理

然后trian.py里面的一些默认参数也可以改:
在这里插入图片描述

训练
python train.py --img 1000 --epochs 3 --data data/defect.yaml --weights weights/yolov5s.pt

这里yolov5s.pt的预训练模型可以提前下好放到weights里面,因为官网下得慢。
链接在此YOLOv5s.pt

等待训练结果:
在这里插入图片描述

一些补充和问题

补充:
如果在训练那一块实在不知道可以去看官方的教程运行coco128:coco128
在这里插入图片描述

程序运行的时候有些问题列在这里
问题一:TypeError: Descriptors cannot not be created directly 解决方法

问题二:Download error: <urlopen error [WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败。
开VPN

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值