转载请注明作者和出处:https://blog.csdn.net/weixin_45814668
微信公众号:qiongjian0427
知乎:https://www.zhihu.com/people/qiongjian0427
Github代码获取:https://github.com/qiongjian/Machine-learning/
Python版本: Python3.x
KNN分类算法和决策树分类算法都是要求分类器做出确定的分类结果,但是,有时候分类器会产生错误;而朴素贝叶斯分类算法则是给出一个最优的猜测结果,同时给出猜测的概率估计值。
朴素一词是因为整个过程都是最原始最简单的假设。
朴素贝叶斯的优缺点
优点:数据少也有效,可以处理多类别问题。
缺点:对输入数据的准备方式较为敏感。
适用数据类型:标称型数据
贝叶斯决策理论
贝叶斯决策理论核心思想:选择具有最高概率的决策。
朴素贝叶斯就是贝叶斯决策理论的一部分。
假设这里有一个数据集,它的数据被分成了两类:类1和类2。