python计算信息熵、信息增益和信息增益率

在这里,我将用python代码计算信息熵信息增益信息增益率

以下代码基于python、numpy和pandas。

没时间看的同学,可以直接跳到总结。

往期博客:

线性方程组的迭代法 python代码实现

函数插值法之牛顿插值法 python代码实现

数值积分 python代码实现

数值微分 python代码实现

信息熵

什么是信息熵,怎么计算,一图盖之。

信息熵

首先

import pandas as pd
import numpy as np

然后我们在此设置一个演示用的大学生贷款数据集。

data = pd.DataFrame({'学历':['专科','专科','专科','专科','专科','本科','本科','本科','本科','本科','研究生','研究生','研究生','研究生','研究生'],
                     '婚否':['否','否','是','是','否','否','否','是','否','否','否','否','是','是','否'],
                     '是否有车':['否','否','否','是','否','否','否','是','是','是','是','是','否','否','否'],
                     '收入水平':['中','高','高','中','中','中','高','高','很高','很高','很高','高','高','很高','中'],
                     '类别':['否','否','是','是','否','否','否','是','是','是','是','是','是','是','否']})
data[['学历','婚否','是否有车','收入水平','类别']]

数据集如下图所示:

贷款数据集

定义函数

定义函数这步我大多是参考和借鉴了下面这篇文章,所以我这篇文章也就不挂原创了。
python详细步骤计算信息增益

#定义计算信息熵的函数:计算Infor(D)
def infor(data):
    a = pd.value_counts(data) / len(data)
    return sum(np.log2(a) * a * (-1))

参数说明

“data”就是我们要输入的数据集。

实例运行

计算信息熵主要是为了后两步做准备,所以这一步就不实例操作了。

信息增益

什么是信息增益,怎么计算,一图盖之。

信息增益

定义函数

#定义计算信息增益的函数:计算g(D|A)
def g(data,str1,str2):
    e1 = data.groupby(str1).apply(lambda x:infor(x[str2]))
    p1 = pd.value_counts(data[str1]) / len(data[str1])
    #计算Infor(D|A)
    e2 = sum(e1 * p1)
    return infor(data[str2]) - e2

参数说明

“str1”就是代表图中的“A”。

“str2”就是代表图中的“D”。

实例运行

拿给出的实例试验一下:

g(data,'学历','类别')

得出如下结果:

0.08300749985576883

信息增益率

什么是信息增益率,怎么计算,一图盖之。

信息增益率

定义函数

#定义计算信息增益率的函数:计算gr(D,A)
def gr(data,str1,str2):
    return g(data,str1,str2)/infor(data[str1])

实例运行

拿给出的实例试验一下:

gr(data,'学历','类别')

得出如下结果:

0.05237190142858302

总结

三者的函数总结如下:

#定义计算信息熵的函数:计算Infor(D)
def infor(data):
    a = pd.value_counts(data) / len(data)
    return sum(np.log2(a) * a * (-1))

#定义计算信息增益的函数:计算g(D|A)
def g(data,str1,str2):
    e1 = data.groupby(str1).apply(lambda x:infor(x[str2]))
    p1 = pd.value_counts(data[str1]) / len(data[str1])
    #计算Infor(D|A)
    e2 = sum(e1 * p1)
    return infor(data[str2]) - e2

#定义计算信息增益率的函数:计算gr(D,A)
def gr(data,str1,str2):
    return g(data,str1,str2)/infor(data[str1])

“data”就是我们要输入的数据集。

“str1”就是代表图中的“A”。

“str2”就是代表图中的“D”。

其实信息增益率比信息增益更准确。

  • 38
    点赞
  • 123
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,关于Python计算信息增益的问题,我可以回答。 计算信息增益可以使用Python中的机器学习库scikit-learn来实现。具体步骤如下: 1. 导入需要的库: ```python from sklearn.feature_extraction import DictVectorizer from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split import numpy as np import pandas as pd ``` 2. 准备数据集,将样本的特征和类别分别存储在两个数组中: ```python features = [{'weather': 'sunny', 'temperature': 'hot', 'humidity': 'high', 'windy': False}, {'weather': 'sunny', 'temperature': 'hot', 'humidity': 'high', 'windy': True}, {'weather': 'overcast', 'temperature': 'hot', 'humidity': 'high', 'windy': False}, {'weather': 'rainy', 'temperature': 'mild', 'humidity': 'high', 'windy': False}, {'weather': 'rainy', 'temperature': 'cool', 'humidity': 'normal', 'windy': False}, {'weather': 'rainy', 'temperature': 'cool', 'humidity': 'normal', 'windy': True}, {'weather': 'overcast', 'temperature': 'cool', 'humidity': 'normal', 'windy': True}, {'weather': 'sunny', 'temperature': 'mild', 'humidity': 'high', 'windy': False}, {'weather': 'sunny', 'temperature': 'cool', 'humidity': 'normal', 'windy': False}, {'weather': 'rainy', 'temperature': 'mild', 'humidity': 'normal', 'windy': False}, {'weather': 'sunny', 'temperature': 'mild', 'humidity': 'normal', 'windy': True}, {'weather': 'overcast', 'temperature': 'mild', 'humidity': 'high', 'windy': True}, {'weather': 'overcast', 'temperature': 'hot', 'humidity': 'normal', 'windy': False}, {'weather': 'rainy', 'temperature': 'mild', 'humidity': 'high', 'windy': True}] labels = ['no', 'no', 'yes', 'yes', 'yes', 'no', 'yes', 'no', 'yes', 'yes', 'yes', 'yes', 'yes', 'no'] ``` 3. 将特征数组转换为机器学习算法可以处理的格式: ```python vec = DictVectorizer() X = vec.fit_transform(features).toarray() ``` 4. 将类别数组转换为0和1的形式: ```python y = np.array([1 if label == 'yes' else 0 for label in labels]) ``` 5. 将数据集划分为训练集和测试集: ```python X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) ``` 6. 训练决策树模型并进行预测: ```python clf = DecisionTreeClassifier(criterion='entropy') clf.fit(X_train, y_train) y_pred = clf.predict(X_test) ``` 7. 计算模型的准确率: ```python ### 回答2: 信息增益是在决策树算法中用于评估特征重要性的指标之一,可以通过Python进行计算。 首先,需要计算整个数据集的熵值(entropy),熵值用于衡量数据集的纯度。可以使用以下代码计算数据集的熵值: ```python import math def calculate_entropy(data): num_instances = len(data) label_counts = {} for instance in data: label = instance[-1] if label not in label_counts: label_counts[label] = 0 label_counts[label] += 1 entropy = 0 for label in label_counts: probability = float(label_counts[label]) / num_instances entropy -= probability * math.log2(probability) return entropy ``` 接下来,需要计算每个特征的信息增益。可以使用以下代码计算特征的信息增益: ```python def calculate_information_gain(data, feature_index): total_entropy = calculate_entropy(data) num_instances = len(data) feature_values = {} for instance in data: feature_value = instance[feature_index] if feature_value not in feature_values: feature_values[feature_value] = [] feature_values[feature_value].append(instance) feature_entropy = 0 for feature_value in feature_values: sub_data = feature_values[feature_value] sub_entropy = calculate_entropy(sub_data) probability = float(len(sub_data)) / num_instances feature_entropy += probability * sub_entropy information_gain = total_entropy - feature_entropy return information_gain ``` 以上代码中,`data`表示数据集,`feature_index`表示特征的索引。 通过调用`calculate_information_gain`函数,可以得到每个特征的信息增益值。选择具有最高信息增益的特征作为决策树节点的划分特征。 以上是使用Python计算信息增益的简单示例,仅供参考。在实际应用中,可能需要进行更多的数据预处理和决策树算法的实现。 ### 回答3: 在Python中,我们可以使用如下的方式来计算信息增益: 1. 计算数据集的初始信息熵(Entropy): - 统计数据集中每个类别的数量。假设数据集中一共有N个样本,其中M个属于类别A,N-M个属于类别B。 - 计算每个类别的概率,即P(A) = M/N,P(B) = (N-M)/N。 - 计算初始熵:Entropy = -P(A) * log2(P(A)) - P(B) * log2(P(B))。 2. 对数据集的每个特征,计算信息增益: - 对于每个特征,统计其不同取值对应的样本数量和类别数量。 - 根据每个特征取值下类别的概率来计算条件熵: - 计算特征取某个值时,属于类别A的样本数量,假设为M1。 - 计算特征取某个值时,属于类别B的样本数量,假设为M2。 - 计算特征取某个值时的概率,即P(特征=某个值) = (M1 + M2) / N。 - 计算条件熵:Conditional_Entropy = - P(特征=某个值) * P(A|特征=某个值) * log2(P(A|特征=某个值)) - P(特征=某个值) * P(B|特征=某个值) * log2(P(B|特征=某个值))。 - 计算特征的信息增益: - 特征的信息增益 = 初始熵 - 条件熵。 3. 找到具有最大信息增益的特征作为划分数据集的最佳特征。 以上是计算信息增益的基本步骤,在Python中我们可以通过统计计算和数学运算来实现这些步骤。可以使用numpy和pandas等库来进行数据处理,以及使用math库进行数学运算。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值