利用 python 实现多张图片的无损拼接

以下两段是作者的心路历程,图个乐的可以看一看,想学干货可以直接略过。

就在昨天晚上,我要为文章配图,要求是将6张图拼接为3张图。我就想,可以呀,PS应该很容易搞定,虽然我PS功底差,但架不住我有位朋友是 king of PS 呀(朋友间的调侃啦)。所以我将每张图都剪切成一样的高度,希望能对PS的过程有所帮助。
king of PS
好朋友不愧是 king of PS ,每张图都拼接的很棒。但是,三张图一一对比,细看还是有一些不太对齐,身患强迫症的我当然心中有些疙瘩。不过好朋友已经做的很棒了,我不能以自己的强迫症去强迫别人,所以我就走上了“自主研发”的道路。

往期博客:

用python画心形函数,属于数学家的浪漫~

拒绝“过劳死”!看看你已经敲了多久的代码!

用python计算每天什么时候下班

导入 python 库

import matplotlib.pyplot as plt
import skimage.io as io
import numpy as np

查看需要拼接的图片

因为工作需要,所以就不使用昨天晚上的图片了。
我就拿了两张截图作为示例演示。

首先看看拼接前的图片是什么样子:

jzg = io.imread('jzg.jpg')   # np.ndarray, [h, w, c], 值域[0, 255], RGB
plt.imshow(jzg)   #查看图片
plt.show()

解释说明:“jzg”保存的是numpy的数组。

jzg

lgz = io.imread('lgz.jpg')   # np.ndarray, [h, w, c], 值域[0, 255], RGB
plt.imshow(lgz)
plt.show()

lgz
因为我使用的是 jupyter Notebook,所以图片显示的不是太清晰。

查看一下图片的大小和数组元素的数据类型。

print(jzg.shape)   #查看图片的大小
print(jzg.dtype)   #查看数组元素数据类型
print(lgz.shape)
print(lgz.dtype)

输出:

(720, 1280, 3)
uint8
(720, 1280, 3)
uint8

(720, 1280, 3)表示的是数组的大小,物理意义为[h, w, c],分别是图片的高度h,图片的宽度w,图片的通道数c。

可以看出两者的大小完全一致,数组元素的数据类型为“uint8”。

查看数组中元素的值域:

print([jzg.min(), jzg.max()])

输出:

[0, 255]

横向拼接

创建拼接用的数组:

pj1 = np.zeros((720,1280 + 1280,3))   #横着拼接
pj1[:,:1280,:] = jzg.copy()   #图片jzg在左
pj1[:,1280:,:] = lgz.copy()   #图片lgz在右
print(pj1.dtype)   #查看数组元素类型

输出:

float64

可以看出拼接后的数据类型不一样了,所以要改一下,不然显示的就是错误的。

pj1=np.array(pj1,dtype=np.uint8)   #将pj1数组元素数据类型的改为"uint8"
plt.imshow(pj1)   #查看拼接情况
plt.show()

拼接后的图片

保存拼接后的图片

将拼接后的图片保存在当前目录下,也可以改为其它的路径。

io.imsave('pj1.jpg', pj1)   #保存拼接后的图片

总结

横向拼接的代码总结如下:

import matplotlib.pyplot as plt
import skimage.io as io
import numpy as np

jzg = io.imread('jzg.jpg')   # np.ndarray, [h, w, c], 值域(0, 255), RGB
plt.imshow(jzg)   #查看图片
plt.show()

lgz = io.imread('lgz.jpg')   # np.ndarray, [h, w, c], 值域(0, 255), RGB
plt.imshow(lgz)
plt.show()

print(jzg.shape)   #查看图片的大小
print(jzg.dtype)   #查看数组元素数据类型
print(lgz.shape)
print(lgz.dtype)

pj1 = np.zeros((720,1280 + 1280,3))   #横向拼接
pj1[:,:1280,:] = jzg.copy()   #图片jzg在左
pj1[:,1280:,:] = lgz.copy()   #图片lgz在右
print(pj1.dtype)   #查看数组元素类型

pj1=np.array(pj1,dtype=np.uint8)   #将pj1数组元素数据类型的改为"uint8"

plt.imshow(pj1)   #查看拼接情况
plt.show()

io.imsave('pj1.jpg', pj1)   #保存拼接后的图片

纵向拼接

当然,可以横向拼接自然也可以纵向拼接,只需将拼接用的数组改为如下:

pj2 = np.zeros((720 + 720,1280,3))   #横向拼接

将拼接操作改为:

pj1[:720,:,:] = jzg.copy()   #图片jzg在上
pj1[720:,:,:] = lgz.copy()   #图片lgz在下

然后其他步骤都一样。

图片间距

有些时候要求要有缝拼接,这时候就将拼接用的数组横向或纵向变大,空白区域使用“0”或者“255”填充(我不知道“0”和“255”中,哪个代表白色,哪个代表黑色,需要的就自己去实验或者查询一下)。

LZW(Lempel-Ziv-Welch)算法是一种无损数据压缩技术,常用于文本文件的压缩。在Python实现LZW解码,你需要模拟LZW编码过程中的动态生成哈希表和编码过程。 以下是基本的步骤: 1. **初始化**:创建一个空的字典(初始键值对通常是数字0到255对应的字符串),并将它作为编码表的开始。 2. **读取输入**:逐个字符读取输入流,如果当前字符已经在字典里,则输出这个字符;如果不在,就将它和字典里的最近匹配项拼接成一个新的字符串,并将其添加到字典中。 3. **编码**:将新产生的字符串的索引(从0开始)作为新的输出字符,继续读取下一个输入字符。 4. **循环迭代**:重复步骤2和3,直到输入流结束。 5. **处理特殊情况**:当输入流结束后,如果字典最后一个键的后继值还在字典之外,需要处理这种情况,通常会创建一个特殊标志如“1”表示链表结束。 下面是一个简单的Python示例实现: ```python def lzw_decode(compressed_data): dict_size = 256 dictionary = {str(i): i for i in range(dict_size)} current_char = '' output = '' for bit in iter(lambda: compressed_data.read(1), ''): code = current_char + bit if code in dictionary: current_char = code else: output += current_char + chr(dictionary[current_char]) new_code = str(dictionary[current_char]) + bit if new_code not in dictionary: dictionary[new_code] = dict_size dict_size += 1 current_char = new_code # Add the last character to the output, as it might not be part of a chain output += current_char return output # 使用示例 compressed_data = open('compressed_file.txt', 'rb') decoded_data = lzw_decode(compressed_data) ```
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值