nndl_excercise
文章平均质量分 54
book here https://github.com/nndl/nndl.github.io
exercise here https://github.com/nndl/exercise
7frog7
这个作者很懒,什么都没留下…
展开
-
nndl_excerise4
得开始期末预习了 下次练习不知道是什么时候了准备数据import osimport numpy as npimport tensorflow as tffrom tensorflow import kerasfrom tensorflow.keras import layers, optimizers, datasetsos.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # or any {'0', '1', '2'}def mnist_dataset()原创 2021-12-01 19:25:15 · 1480 阅读 · 0 评论 -
nndl_exercise3_2
Softmax Regression Example生成数据集, 看明白即可无需填写代码‘+’ 从高斯分布采样 (X, Y) ~ N(3, 6, 1, 1, 0).‘o’ 从高斯分布采样 (X, Y) ~ N(6, 3, 1, 1, 0)‘*’ 从高斯分布采样 (X, Y) ~ N(7, 7, 1, 1, 0)import tensorflow as tfimport matplotlib.pyplot as pltfrom matplotlib import animation, rc原创 2021-11-28 21:19:47 · 1099 阅读 · 0 评论 -
nndl_exercise3_1
Logistic Regression Example生成数据集, 看明白即可无需填写代码‘+’ 从高斯分布采样 (X, Y) ~ N(3, 6, 1, 1, 0).‘o’ 从高斯分布采样 (X, Y) ~ N(6, 3, 1, 1, 0)import tensorflow as tfimport matplotlib.pyplot as pltfrom matplotlib import animation, rcfrom IPython.display import HTMLimpor原创 2021-11-28 18:09:16 · 1083 阅读 · 0 评论 -
nndl_exercise2
说明请按照填空顺序编号分别完成 参数优化,不同基函数的实现import numpy as npimport matplotlib.pyplot as pltdef load_data(filename): """载入数据。""" xys = [] with open(filename, 'r') as f: for line in f: xys.append(map(float, line.strip().split()))#分割 去除原创 2021-11-27 17:20:05 · 2488 阅读 · 0 评论 -
nndl_exercise1
numpy 练习题numpy 的array操作1.导入numpy库import numpy as np2.建立一个一维数组 a 初始化为[4,5,6], (1)输出a 的类型(type)(2)输出a的各维度的大小(shape)(3)输出 a的第一个元素(值为4)a=np.array([4,5,6])a[0]43.建立一个二维数组 b,初始化为 [ [4, 5, 6],[1, 2, 3]] (1)输出各维度的大小(shape)(2)输出 b(0,0),b(0,1),b(1,1) 这三个元原创 2021-11-26 21:35:02 · 197 阅读 · 0 评论