原来选题叫队友坑了
新的题目好像非常简单!
主要是检测帧之间的画面变化 用了dHash算法
import cv2
import numpy as np
from PIL import Image
print("input the video name")
FILE_NAME=input()
TO_WRITE="pic.jpg"
CHECK_FLAG = 0
FAIL_POS = 0.77
vidget=cv2.VideoCapture(FILE_NAME)
writename = 0
def dHash(image):
hash = []
for i in range(8):
for j in range(8):
if image[i,j]>image[i,j+1]:
hash.append(1)
else:
hash.append(0)
return hash
def ham_distance(hash1,hash0):
num = 0
for i in range(len(hash1)):
if hash1[i] != hash0[i]:
num += 1
return num
if __name__ == "__main__":
while True:
#截取
success, pic = vidget.read()
if not success:
break
filename=str(writename)+TO_WRITE
writename ^= 1
millisecond=vidget.get(cv2.CAP_PROP_POS_MSEC)
second = millisecond // 1000
minute = second // 60
minute = int(minute)
second = int(second)
second %= 60
cv2.imwrite(filename,pic)
#比较 dHash algorithm
'''
将图片缩小为9*8大小
灰度化处理
计算差异值,获得最后哈希值(与aHash主要区别处)。
比较每行左右两个像素,
如果左边的像素比右边的更亮(左边像素值大于右边像素值),则记录为1,否则为0。
因为每行有9个像素,左右两个依次比较可得出8个值,所以8行像素共可以得出64个值,
因此此时哈希值为长度是64的0-1序列。
计算汉明距离。
'''
image0 = Image.open('0pic.jpg')
image1 = Image.open('1pic.jpg')
image1 = np.array(image1.resize((9,8),Image.ANTIALIAS).convert('L'),'f')
image0 = np.array(image0.resize((9, 8), Image.ANTIALIAS).convert('L'), 'f')
hash0=dHash(image0)
hash1=dHash(image1)
distance=ham_distance(hash1,hash0)
similarity=1.0 - distance/64.0
if similarity < FAIL_POS:
print(minute,' minute',second,' second detected with similarity',similarity)
CHECK_FLAG = 1
if CHECK_FLAG == 0:
print("no edit detected")
过几天有时间的话也许会调调FAIL_POS的数据…除非故意给跳跃的视频录屏,效果还是可以的