BERT求古诗文本相似度

本文探讨了使用BERT-CCPoem模型处理中文古诗词时遇到的问题,如处理不同长度诗句的向量化处理和计算余弦相似度时的梯度问题。作者通过实例展示了如何通过填充零和平均池化进行解决,并分享了初步的情感分析结果并不理想。
摘要由CSDN通过智能技术生成

大概学了原理,简单实践一下发现了一些问题:
1.对于不同长度的诗句可能要用0来补齐向量长度
2.直接用两个句子的last_hidden_state向量计算余弦相似度时会报梯度相关的错误 不能计算。不很懂为什么。
用的是BERT-CCPoem 传送门
参考了 传送门 虽然不是中文的bert 但是基本的原理差不多,有些类型转换的细节要改一改

from transformers import BertModel,BertTokenizer
import torch
import numpy
from  sklearn.metrics.pairwise import cosine_similarity
tokenizer = BertTokenizer.from_pretrained('C:\\Users\\1323231\\Desktop\\BERT_CCPoem_v1')
model = BertModel.from_pretrained('C:\\Users\\1323231\\Desktop\\BERT_CCPoem_v1')
sentences = ["折断绿杨枝","无令长相忆"
【资源说明】 课程设计基于Keras+BERT模型实现的古诗生成器源码(含项目说明+超详细注释).zip 一个基于Google开源的BERT模型编写的一个古诗生成器,主要包括如下功能: - 使用唐诗数据集训练模型。 - 使用训练好的模型,随机生成一首古体诗。 - 使用训练好的模型,续写一首古体诗。 - 使用训练好的模型,随机生成一首藏头诗。 随机生成一首古体诗: ``` 不见山头寺,唯闻竹下僧。 白云生寺远,青壁入山深。 夜宿高楼月,秋眠白阁钟。 不缘山下路,何事见僧踪。 ``` ``` 千里彩云千里别,再来还访玉京师。 三年不负青云志,此地终须见汝时。 ``` 续写一首古体诗(以"床前明月光,"为例): ``` 床前明月光,无端出曙寒。 夜来应不寐,头白露沾袍。 ``` ``` 床前明月光,不见到天涯。 寂寞海云外,寥寥孤烛前。 ``` 随机生成一首藏头诗(以"海阔天空"为例): ``` 海燕朝朝去, 阔鸥还远居。 天寒疑水势, 空见见鱼行。 ``` ``` 海上苍须插锦鳞, 阔无心计似文君。 天涯本是无心物, 空解将人学钓鳌。 ``` 快速开始 ## 1. 如何训练模型? - clone项目到本地。 - 下载Google的预训练权重。 - 安装依赖环境。 - 在`settings.py`中配置好相关路径。 - 在`keras-bert-poetry-generator`路径下,执行命令`python3 train.py`。 ## 2. 如何使用训练好的模型生成古诗? - csdn下载项目到本地解压,重命名为keras-bert-poetry-generator。 - 下载Google的预训练权重。 - 安装依赖环境。 - 在`settings.py`中配置好相关路径。 - 在`keras-bert-poetry-generator`路径下,执行命令`python3 eval.py`。 【备注】 1、该资源内项目代码都经过测试运行成功,功能ok的情况下才上传的,请放心下载使用! 2、本项目适合计算机相关专业(如计科、人工智能、通信工程、自动化、电子信息等)的在校学生、老师或者企业员工下载使用,也适合小白学习进阶,当然也可作为毕设项目、课程设计、作业、项目初期立项演示等。 3、如果基础还行,也可在此代码基础上进行修改,以实现其他功能,也可直接用于毕设、课设、作业等。 欢迎下载,沟通交流,互相学习,共同进步!
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值