机器学习——07集成方法(随机森林和AdaBoost)

目录

1. Bagging

1.1 Bagging模型

1.2 Bagging代码

2. 随机森林(Random Forest )

2.1 随机森林模型

2.2 随机森林代码

3. AdaBoost

3.1 AdaBoost模型

3.2 AdaBoost代码

4. Stacking

4.1 Stacking代码

5. Votting

5.1 投票规则代码


更好用集成学习思想,不能用算法表示

整体表现较差的学习器,在一些样本上的表现有可能会超过“最好”的学习器。

当做重要决定时,大家可能都会考虑吸取多个专家而不只是一个人的意见。集成学习也是如此。
集成学习就是组合多个学习器,最后可以得到一个更好的学习器。

集成学习算法∶

  1. 个体学习器之间不存在强依赖关系,装袋(bagging )
  2. 随机森林(Random Forest )
  3. 个体学习器之间存在强依赖关系,提升( boosting )
  4. Stacking

1. Bagging

1.1 Bagging模型

直觉︰数据量越大,学习器性能越好。
bagging也叫做bootstrap aggregating,是在原始数据集选择S次后得到S个新数据集的一种技术。是一种有放回抽样。

eg:

原始训练数据集
{0,1,2,3,4,5,6,7,8,9}
Bootstrap采样
{7,2,6,7,5,4,8,8,1,0}——未采样3,9
{1,3,8,0,3,5,8,0,1,9}——未采样2,4,6,7                                                                                {2,9,4,2,7,9,3,0,1,0}———未采样3,5,6,8

 对于每一个数据集都可以采用不同的模型进行训练。

1.2 Bagging代码

数据集采用鸢尾花数据集的前两列特征。为了更好的看出区别,如果全都选的话,准确率很高

# 导入算法包以及数据集
from sklearn import neighbors
from sklearn import datasets
from sklearn.ensemble import BaggingClassifier
from sklearn import tree
from sklearn.model_selection import train_test_split
import numpy as np
import matplotlib.pyplot as plt
import warnings
# action参数可以设置为ignore,一位一次也不喜爱你是,once表示为只显示一次
warnings.filterwarnings(action='ignore')

iris = datasets.load_iris()
# 只选取前两列,前两个特征
x_data = iris.data[:,:2]
y_data = iris.target

x_train,x_test,y_train,y_test = train_test_split(x_data, y_data)

knn = neighbors.KNeighborsClassifier()
knn.fit(x_train, y_train)

def plot(model):
    # 获取数据值所在的范围
    x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
    y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

    # 生成网格矩阵
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))

    z = model.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
    z = z.reshape(xx.shape)
    # 等高线图
    cs = plt.contourf(xx, yy, z)

# 画图
plot(knn)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
# 准确率
print(knn.score(x_test, y_test))   #63%

# 决策树
dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)

# 画图
plot(dtree)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
# 准确率
print(dtree.score(x_test, y_test))  #65.7%


# bagging_knn训练100个knn的分类器
bagging_knn = BaggingClassifier(knn, n_estimators=100)
# 输入数据建立模型
bagging_knn.fit(x_train, y_train)
plot(bagging_knn)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
print(bagging_knn.score(x_test, y_test))   #78.9%

# bagging_tree
bagging_tree = BaggingClassifier(dtree, n_estimators=100)
# 输入数据建立模型
bagging_tree.fit(x_train, y_train)
plot(bagging_tree)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()
print(bagging_tree.score(x_test, y_test))  #71%

注意:

knn63%——78%

tree65%——71%

用了集成学习后准确率提高,但也可能降低。一般在较复杂的情况下使用效果更好。

2. 随机森林(Random Forest )

2.1 随机森林模型

RF=决策树+Bagging+随机属性选择

RF算法流程:

1.样本的随机∶从样本集中用bagging(有放回的随机抽样)的方式,随机选择n个样本。
2.特征的随机∶从所有属性d中随机选择k个属性(k<d) ,然后从k个属性中选择最佳分割属性作为节点建立CART决策树。
3.重复以上两个步骤m次,建立m棵CART决策树。
4.这m棵CART决策树形成随机森林,通过投票表决结果,决定数据属于哪一类。
 

效果:一般RF比Tree结果要好!

2.2 随机森林代码

from sklearn import tree
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import matplotlib.pyplot as plt
import warnings
# action参数可以设置为ignore,一位一次也不喜爱你是,once表示为只显示一次
warnings.filterwarnings(action='ignore')


# 载入数据
data = np.genfromtxt("LR-testSet2.txt", delimiter=",")
x_data = data[:,:-1]
y_data = data[:,-1]

plt.scatter(x_data[:,0],x_data[:,1],c=y_data)
plt.show()

x_train,x_test,y_train,y_test = train_test_split(x_data, y_data, test_size = 0.5)

def plot(model):
    # 获取数据值所在的范围
    x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
    y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

    # 生成网格矩阵
    xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                         np.arange(y_min, y_max, 0.02))

    z = model.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
    z = z.reshape(xx.shape)
    # 等高线图
    cs = plt.contourf(xx, yy, z)
    # 样本散点图
    plt.scatter(x_test[:, 0], x_test[:, 1], c=y_test)
    plt.show()

# 决策树
dtree = tree.DecisionTreeClassifier()
dtree.fit(x_train, y_train)
plot(dtree)
print(dtree.score(x_test, y_test))

# 随机森林,
# 构建50棵决策树、
RF = RandomForestClassifier(n_estimators=50)
RF.fit(x_train, y_train)
plot(RF)
print(RF.score(x_test, y_test))

注意:

tree76%——RF83%

用了随机森林后比决策树准确率提高,但也可能降低。一般在较复杂的情况下使用效果更好。

3. AdaBoost

3.1 AdaBoost模型

AdaBoost——"Adaptive Boosting"(自适应增强)

它的自适应在于:前一个基本分类器被错误分类的样本的权值会增大,而正确分类的样本的权值会减小,并再次用来训练下一个基本分类器。同时,在每一轮迭代中,加入一个新的弱分类器,直到达到某个预定的足够小的错误率或达到预先指定的最大迭代次数才确定最终的强分类器。

直觉:将学习器的重点放在“容易”出错的样本上,可以提升学习器的性能。

AdaBoost算法流程:

  1. 首先,是初始化训练数据的权值分布D1。假设有N个训练样本数据,则每一个训练样本最开始时,都被赋予相同的权值:w1=1/N。
  2. 然后,训练弱分类器h。具体训练过程中是∶如果某个训练样本点,被弱分类器h准确地分类,那么在构造下一个训练集中,它对应的权值要减小;相反,如果某个训练样本点被错误分类,那么它的权值就应该增大。权值更新过的样本集被用于训练下一个分类器,整个训练过程如此迭代地进行下去。
  3. 最后,将各个训练得到的弱分类器组合成一个强分类器。各个弱分类器的训练过程结束后,加大分类误差率小的弱分类器的权重,使其在最终的分类函数中起着较大的决定作用,而降低分类误差率大的弱分类器的权重,使其在最终的分类函数中起着较小的决定作用。
    换而言之,误差率低的弱分类器在最终分类器中占的权重较大,否则较小。
     

3.2 AdaBoost代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import tree
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles
from sklearn.metrics import classification_report

# 生成2维正态分布,生成的数据按分位数分为两类,500个样本,2个样本特征
x1, y1 = make_gaussian_quantiles(n_samples=500, n_features=2,n_classes=2)
# 生成2维正态分布,生成的数据按分位数分为两类,400个样本,2个样本特征均值都为3
x2, y2 = make_gaussian_quantiles(mean=(3, 3), n_samples=500, n_features=2, n_classes=2)
# 将两组数据合成一组数据
x_data = np.concatenate((x1, x2))
y_data = np.concatenate((y1, - y2 + 1))

plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()





# 决策树模型
model = tree.DecisionTreeClassifier(max_depth=3)

# 输入数据建立模型
model.fit(x_data, y_data)

# 获取数据值所在的范围
x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

z = model.predict(np.c_[xx.ravel(), yy.ravel()])# ravel与flatten类似,多维数据转一维。flatten不会改变原始数据,ravel会改变原始数据
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()

# 模型准确率
print(model.score(x_data,y_data))    #76.4%






# AdaBoost模型
model = AdaBoostClassifier(DecisionTreeClassifier(max_depth=3),n_estimators=10)
# 训练模型
model.fit(x_data, y_data)

# 获取数据值所在的范围
x_min, x_max = x_data[:, 0].min() - 1, x_data[:, 0].max() + 1
y_min, y_max = x_data[:, 1].min() - 1, x_data[:, 1].max() + 1

# 生成网格矩阵
xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.02),
                     np.arange(y_min, y_max, 0.02))

# 获取预测值
z = model.predict(np.c_[xx.ravel(), yy.ravel()])
z = z.reshape(xx.shape)
# 等高线图
cs = plt.contourf(xx, yy, z)
# 样本散点图
plt.scatter(x_data[:, 0], x_data[:, 1], c=y_data)
plt.show()

# 模型准确率
print(model.score(x_data,y_data))   #96.7%

注意:

tree76%——Adaboost96%

Adaboost效果很好。

4. Stacking

使用多个不同的分类器对训练集进行预测,把预测结果作为一个次级分类器的输入。次级分类器的输出是整个模型的预测结果。

4.1 Stacking代码

from sklearn import datasets
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from mlxtend.classifier import StackingClassifier    # pip install mlxtend
import numpy as np
import warnings
# action参数可以设置为ignore,一位一次也不喜爱你是,once表示为只显示一次
warnings.filterwarnings(action='ignore')


# 载入数据集
iris = datasets.load_iris()
# 只要第1,2列的特征
x_data, y_data = iris.data[:, 1:3], iris.target

# 定义三个不同的分类器
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = DecisionTreeClassifier()
clf3 = LogisticRegression()

# 定义一个次级分类器
lr = LogisticRegression()
sclf = StackingClassifier(classifiers=[clf1, clf2, clf3],
                          meta_classifier=lr)

for clf, label in zip([clf1, clf2, clf3, sclf],
                      ['KNN', 'Decision Tree', 'LogisticRegression', 'StackingClassifier']):
    scores = model_selection.cross_val_score(clf, x_data, y_data, cv=3, scoring='accuracy')
    print("Accuracy: %0.2f [%s]" % (scores.mean(), label))

注意:

使用Stacking结果可能会好也可能不好

5. Votting

代码和stacking差不多

5.1 投票规则代码

from sklearn import datasets
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import VotingClassifier
import numpy as np
import warnings
# action参数可以设置为ignore,一位一次也不喜爱你是,once表示为只显示一次
warnings.filterwarnings(action='ignore')



# 载入数据集
iris = datasets.load_iris()
# 只要第1,2列的特征
x_data, y_data = iris.data[:, 1:3], iris.target

# 定义三个不同的分类器
clf1 = KNeighborsClassifier(n_neighbors=1)
clf2 = DecisionTreeClassifier()
clf3 = LogisticRegression()

sclf = VotingClassifier([('knn', clf1), ('dtree', clf2), ('lr', clf3)])

for clf, label in zip([clf1, clf2, clf3, sclf],
                      ['KNN', 'Decision Tree', 'LogisticRegression', 'VotingClassifier']):
    scores = model_selection.cross_val_score(clf, x_data, y_data, cv=3, scoring='accuracy')
    print("Accuracy: %0.2f [%s]" % (scores.mean(), label))

 关于为什么投票分类器效果更好的解释——https://blog.csdn.net/tsjjjjj/article/details/104667223

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值