传统目标跟踪——(结合 KNN 背景减法、MeanShift 和kalmanfilter)

本文介绍了一个结合KNN背景减法、MeanShift和KalmanFilter的行人跟踪器实现。通过OpenCV库,首先利用KNN背景减法识别行人,然后应用MeanShift进行目标定位,再用KalmanFilter进行预测和校正,从而提高跟踪稳定性。在每一帧中,更新行人位置并显示跟踪结果。
摘要由CSDN通过智能技术生成

相当于之前传统算法的一个改进,但是效果也不是很好。

自己思考:总体是背景减法,meanshift和kalmanfilter感觉是辅助来修正参数的。

【计算机视觉】实现一个结合了 KNN 背景减法、MeanShift 和kalmanfilter的行人跟踪器。_danyow-4的博客-CSDN博客

代码:

'''
1.pedestrain class:     接受一个 id ,一个 hsv 格式的初始帧,和一个初始跟踪窗口,
'''
import cv2
import numpy as np


class Pedestrian():
    '''
    一个被追踪行人,有一个状态,包括id,窗口,直方图和过滤器'''

    def __init__(self, id, hsv_frame, track_window):
        self.id = id
        self.track_window = track_window
        self.term_crit = (cv2.TERM_CRITERIA_COUNT | cv2.TERM_CRITERIA_EPS, 10, 1)

        x, y, w, h = track_window
        roi = hsv_frame[y:y + h, x:x + w]
        roi_hist = cv2.calcHist([roi], [0], None, [16], [0, 180])
        self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX)
        self.kalman = cv2.KalmanFilter(4, 2)
        self.kalman.measurementMatrix = np.array(
            [[1, 0, 0, 0],
             [0, 1, 0, 0]], np.float32)
        self.kalman.transitionMatrix = np.array(
            [[1, 0, 1, 0],
             [0, 1, 0, 1],
             [0, 0, 1, 0],
             [0, 0, 0, 1]], np.float32)
        self.kalman.processNoiseCov = np.array(
            [[1, 0, 0, 0],
             [0, 1, 0, 0],
             [0, 0, 1, 0],
             [0, 0, 0, 1]], np.float32) * 0.03
        cx = x + w / 2
        cy = y + h / 2
        self.kalman.statePre = np.array(
            [[cx], [cy], [0], [0]], np.float32
        )

        self.kalman.statePost = np.array(
            [[cx], [cy], [0], [1]], np.float32
        )

    '''
    每一帧画面都调用
    '''

    def update(self, frame, hsv_frame):
        # 计算直方图的反向投影
        back_proj = cv2.calcBackProject([hsv_frame], [0], self.roi_hist, [0, 180], 1)

        ret, self.track_window = cv2.meanShift(back_proj, self.track_window, self.term_crit)
        x, y, w, h = self.track_window
        center = np.array([x + w / 2, y + h / 2], np.float32)

        prediction = self.kalman.predict()
        estimate = self.kalman.correct(center)
        center_offset = estimate[:, 0][:2] - center
        self.track_window = (x + int(center_offset[0]),
                             y + int(center_offset[1]), w, h)
        x, y, w, h = self.track_window
        '''
        总结更新方法,我们将卡尔曼滤波器预测绘制为蓝色圆圈,
        校正后的跟踪窗口为青色矩形,行人的id为矩形上方的蓝色文本'''
        cv2.circle(frame, (int(prediction[0]), int(prediction[1])), 4, (255, 0, 0), -1)
        # Draw the corrected tracking window as a cyan rectangle.
        cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 255, 0), 2)

        # Draw the ID above the rectangle in blue text.
        cv2.putText(frame, 'ID: %d' % self.id, (x, y - 5),
                    cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 0, 0),
                    1, cv2.LINE_AA)


'''
1.loading a video file ,initial a background subtractor 
    and setting the background subtractor's history length'''


def main():
    cap = cv2.VideoCapture("E:\Python-Code/videodataset/test.mp4")
    # 创建knn背景减法器
    # 使用前 20 帧来填充背景减法器的历史
    # 基于背景减法,使用第21帧识别运动的前景物体,我们将其视为行人。
    # 为每个行人分配一个id和一个初始跟踪窗口,然后计算一个直方图
    bg_subtractor = cv2.createBackgroundSubtractorKNN()
    history_length = 20
    bg_subtractor.setHistory(history_length)

    erode_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
    dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3))

    # 存储行人对象
    pedestrain = []
    # 帧数计数器,用来决定是否有足够的帧数添加到背景减法器
    num_history_frame_populated = 0

    while True:
        grabbed, frame = cap.read()
        if (grabbed is False):
            break
        '''如果背景减法器历史数据不够,将会继续添加'''
        # apply the knn background subtractor
        fg_mask = bg_subtractor.apply(frame)  # 前景掩码的获取

        # let the b~g build up a history
        if num_history_frame_populated < history_length:
            num_history_frame_populated += 1
            continue

        '''一旦背景减法器的历史记录已满,我们对每个新捕获的帧进行更多处理,
        我们对前景蒙版执行阈值处理、腐蚀和膨胀,以及 然后我们检测可能是移动物体的轮廓'''
        # create the threshold image
        _, thresh = cv2.threshold(fg_mask, 127, 255, cv2.THRESH_BINARY)

        cv2.erode(thresh, erode_kernel, thresh, iterations=2)
        cv2.dilate(thresh, dilate_kernel, thresh, iterations=2)
        # detect contours in the threshold image
        contours, hier = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

        hsv_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
        '''
        一旦我们有了轮廓和框架的 hsv 版本,我们就可以检测和跟踪移动对象了。
        我们为每个轮廓找到并绘制一个边界矩形,该矩形足够大,可以作为行人,
        此外,如果我们还没有填充 行人列表,
        我们现在通过基于每个边界矩形(以及 hsv 图像的相应区域)添加一个新的行人对象来实现'''
        # draw rectangle around large contours but also create pedestrains maybe
        should_initialize_pedestrains = len(pedestrain) == 0
        id = 0
        for c in contours:
            if cv2.contourArea(c) > 500:
                (x, y, w, h) = cv2.boundingRect(c)
                cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 1)
                if should_initialize_pedestrains:
                    pedestrain.append(Pedestrian(id, hsv_frame,(x, y, w, h)))
            id += 1
        # Update the tracking of each pedestrian.
        for i in pedestrain:
            i.update(frame, hsv_frame)

        cv2.imshow('Pedestrians Tracked', frame)

        k = cv2.waitKey(110)
        if k == 27:  # Escape
            break




if __name__ == "__main__":
    main()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值