汇川中型PLC InoProShop 编程学习

常用快捷键
帮助文档        F1
登录               Alt + F8
启动               F5
强制变量        Ctrl + F7
调试跳过        F10
设置断点        F9
查找               Ctrl + F 

第一章  新建工程

1.打开InoProShop软件,点击新建项目;

2.在弹出的对话框中选择“标准工程”-“具体的PLC型号”-“编程语言”,输入项目名称,选择存储位置后,点击确定;

3.项目工程建完后的样子;

第二章  设备网络组态

1.双击“网络组态”,打开网络组态界面;

2.在网络组态界面中,点击CPU,选择项目所需要的接口,协议总线出现;

3.在EtherCat总线上插入伺服驱动器(从右侧网络设备列表中选择);

第三章  机架设备组态

1.双击“CPU机架”进入设备组态页面;

2.在右侧模块列表中,双击需要的模块将其插入到PLC主机架中,左上角可以在机架和总线间切换,以显示更多的硬件设备;

3.在硬件组态界面,双击导轨上的CPU,配置通信设置;

4.配置CPU IP地址,系统时间;

5.双击设备菜单中的“高速IO模块”,配置CPU本体的IO端子定义、计数器、轴参数设置和IO映射等;

6.双击设备菜单中的“数字量输入模块”,配置数字量输入模块;

7.双击设备菜单中的“数字量输出模块”,配置数字量输出模块;

8.双击设备菜单中的“模拟量输入模块”,配置模块量输入模块;

9.击设备菜单中的“模拟量输出模块”,配置模块量输出模块;

第四章  变量定义

1.在设备菜单视图Application中添加“全局变量列表”,新建一个全局变量表,双击打开,在开始编程前,定义变量以便后续编程使用;

第五章  创建一个程序

1.在设备菜单视图Application - PLC_PRG上右击,添加对象 - 动作,新建一个子程序;

1.1 FB&FC 程序变量声明,变量类型;

2.打开PLC_PRG(PRG)主程序,在程序编辑区空白处右击,调出输入助手;

3.在输入助手 - 模块调用 中找到Application下的ACT子程序,点击确定;

4.在ACT()后面需要加上" ; "以完成语句;

### 部署大规模机器学习模型至高通 SOC #### 理解部署需求 为了使大规模机器学习模型能够在高通系统级芯片(SOC)上高效运行,需考虑硬件特性以及软件优化策略。对于此类任务,不仅涉及模型本身的调整,还包括针对目标平台特性的适配工作。 #### 模型准备与转换 在将模型移植到高通设备之前,通常先利用框架如TensorFlow Lite或ONNX Runtime进行量化处理和压缩操作[^3]。这些工具能够有效减小模型尺寸并提升推理速度,使之更适合移动终端等资源受限环境下的执行效率。 #### 开发环境配置 鉴于高通提供了专门用于加速AI运算的SDK——Qualcomm Neural Processing SDK (SNPE),建议采用此套件作为主要开发接口之一。通过它可实现对多种神经网络结构的支持,并提供跨不同计算单元(CPU/GPU/DSP)的最佳性能调度方案[^2]。 #### 实际部署流程 当完成上述准备工作之后,则进入具体的部署环节: - **集成阶段**:把预处理后的模型文件导入应用程序内部; - **编译过程**:借助SNPE提供的命令行工具或者API函数,按照指定参数设置生成适用于目标平台的目标码; - **测试验证**:确保所构建的应用能在真实环境中稳定运作,并达到预期效果前反复调试直至满意为止。 ```cpp // C++ 示例代码片段展示如何加载DLC(DNN Model Container)格式的模型并通过SNPE API创建Runtime对象 #include <snpe/Snpe.hpp> using namespace SNPE; std::shared_ptr<IRuntime> runtime; runtime = Snpe::createRuntime("path_to_your_model.dlc", /*useGPU=*/true, /*useDSP=*/false); if (!runtime->isValid()) { std::cerr << "Failed to create valid SNPE runtime." << std::endl; } ``` #### 合作模式的重要性 值得注意的是,在整个过程中保持与其他生态伙伴紧密沟通至关重要。正如智谱AI的经验所示,只有通过多方协作才能真正推动大模型技术更好地服务于实际应用场景之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值