Edge Intelligence: The Confluence of Edge Computing and Artificial Intelligence 论文阅读笔记

论文类型:综述

摘要:

论文把AI和edge computation的结合分成两个类型:

  1. AI for edge:使用AI优化边缘计算中遇到的关键问题(IEC)

  2. AI on edge:AI任务在边端协同计算,包括网络模型的构建、训练、推理(AIE)

论文在上述两个角度切入,介绍每个角度的核心概念和研究方向
在这里插入图片描述

优化目标:

Quality of Experience:

  1. Performance

    1. the ratio of successfully offloading - computation offloading problem

    2. the service providers’ need-to-be-maximized revenue and needto-be-minimized hiring costs of Base Stations (BSs) - service placement problem

  2. Cost:

    1. computation cost(delay)

    2. communication cost(latency)

    3. energy cost

  3. Privacy:

    1. privacy preservation(隐私保护)-Federated learning
  4. Efficency

  5. Reliability:系统可靠性。使用时不出故障。类似availablility(高可用性)

IEC已有工作:

  1. Topology:

    1. 边缘节点的编排(OES):the deployment and installation of wireless telecom equipment and servers.

      1. 无人机调度与任务规划(UAVs):无人机相当于小型可动的边缘设备。通过ML、DL进行功耗预测、移动轨迹预测
    2. 无线网络(WN):

      1. Data Acquisition:如何高效的从边缘设备中提取大量数据。多址、无线资源分配和信号编码/解码。不关注(太底层)

      2. Network Planning:网络编排与管理。关注协议与中间件的管理。目前主要的工作方向为intelligent networking,利用AI技术构建智能无线通信机制。不关注(太底层)。

  2. content:

    1. Data Provisioning:数据配置。云端和边端的数据共享。

    2. service provisioning:服务配置。目前主要工作为构建轻量级Qos(服务质量)感知的基于服务的框架方案。

    3. service placement:服务卸载。可看作服务配置的一个部分。结合QoE将云端数据卸载到边端。引入RL进行卸载决策。

    4. service composition:服务组合。基于用户QoE与mobile能耗,结合AI选择更有的服务组合。

    5. service caching:服务缓存池。看作服务组合的一部分。设计缓存池来存储被频繁访问的数据和服务。多智能体研究。

  3. service

    1. computation offloading:计算卸载。从资源受限的移动端,将资源密集型的任务卸载到edge和cloud,并对各种计算和通信资源进行负载均衡。

      1. 利用李雅普诺夫优化技术动态地管理多用户多服务器边缘计算系统的无线电与计算资源。需要关注两篇论文。

        1. “Qoe aware and cell capacity enhanced computation offloading for multi-server mobile edge computing systems with energy harvesting devices” (pdf)

        2. “A mobilityaware cross-edge computation offloading framework for partitionable applications” (pdf)

      2. 利用DQN(Deep Q-newtwork,强化学习网络)进行计算卸载决策。其将计算卸载问题建模为马尔可夫决策过程(MDP)。需要重点关注两篇论文。

        1. “Learningbased computation offloading for iot devices with energy harvesting” (pdf)

        2. “Performance optimization in mobile-edge computing via deep reinforcement learning” (pdf)

    2. user profile migration:用户画像(配置文件,私有数据,日志)的迁移问题

    3. mobility management:移动性管理,与用户画像结合
      在这里插入图片描述

AIE已有工作

  1. framework design(框架设计):

    1. model training

      1. distributed training framework:

        1. data splitting:目前最成功的工作是联邦学习。把训练任务分配给多个边缘端(各使用各自的训练数据),再把多个边缘段模型的梯度平均后用于数据中心网络的梯度下降。在过程中始终关注隐私保护和网络传输过程中的阻塞问题(优选大梯度)。

        2. model splitting:这个感觉对数据的传输有很高的要求,毕竟某一份数据的梯度丢失了不会影响模型整体的梯度下降方向,但是一份数据的某一部分梯度消失,那么其他部分的梯度也没有用了。

      2. knowledge distillation-based framework(基于知识蒸馏的训练框架):去中心化、中心化都有,研究方向是迁移学习任务的云边端协作

    2. model inference

      1. model splitting framework
  2. model adaptation(模型适配):基于已有的framework,提出更多有助于模型适配到edge端运行的优化方法。针对数据传输延时、计算延时进行优化

    1. model compression:模型压缩。模型层降维,剪枝,精度降级,组件共享(权重共享,卷积)

    2. conditional computation:条件计算(dropout)

      1. input filtering:数据离线预处理

      2. early-exit:推理早退机制

      3. Components Shutoff

      4. result caching

    3. Algorithm Asynchronization:联邦学习关注点

    4. Thorough Decentralization:彻底的去中心化。区块链和博弈论知识。不关注。

  3. processor acceleration:处理器硬件加速。不不关注。

model adaptation 各研究方向以及解决方案

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值