SVM和随机森林的特点归纳

SVM

1.解决小样本下机器学习问题(不像深度学习一样,依赖海量数据)

2.可以解决高维问题,即大型特征空间(借助核函数);但当样本很多时,效率并不是很高

3.SVM的最终决策函数只由少数的支持向量所确定,计算的复杂性取决于支持向量的数目,而不是样本空间的维数

4.无需依赖整个数据,无局部极小值问题;但SVM算法对大规模训练样本难以实施

5.能够处理非线性特征的相互作用,对于核函数的高维映射可解释性不强,尤其是径向基函数

随机深林

1.简单,容易实现,计算开销小,并且它在很多现实任务中展现出来了强大的性能

2.它能够处理很高维度(特征很多)的数据,并且不用做特征选择(可以随机选择各种特征)

3.训练速度快,容易做成并行化方法

4. 在训练完后,它能够给出哪些feature比较重要

5.在创建随机森林的时候,对generlization error使用的是无偏估计,模型泛化能力强

6.对于不平衡的数据集来说,它可以平衡误差;如果有很大一部分的特征遗失,仍可以维持准确度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值