Datawhale的2021的四月学习——食物音频音频 深度学习模型搭建与训练

系列文章目录

Datawhale的2021的四月学习——食物音频分析 baseline
Datawhale的2021的四月学习——食物音频 特征分析
Datawhale的2021的四月学习——食物音频音频 数据特征分析

前言

本文是基于Datawhale的2021的四月学习——食物音频分析,此为里奥呐多艾斯的Task4 食物声音识别-深度学习模型搭建与训练,本文章为代码分析(个人理解,如有错误,请在评论指正,谢谢),本文使用的环境为天池实验室

1. 基础操作(数据处理)

1.1 导包

1.1.1 分析

略,基本使用已经在之前的baseline中已经写过,此处略过,有需要时请点击链接

1.1.2 代码

#基本库
import pandas as pd
import numpy as np
pd.plotting.register_matplotlib_converters()
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import MinMaxScaler

#深度学习框架
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Conv2D, Flatten, Dense, MaxPool2D, Dropout
from tensorflow.keras.utils import to_categorical 
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC
import tensorflow as tf
import tensorflow.keras

#音频处理库
import os
import librosa
import librosa.display
import glob 

1.2 特征提取及数据集的建立

1.2.1 分析

略,基本使用已经在之前的baseline中已经写过,此处略过,有需要时请点击链接

1.2.2 代码

from tqdm import tqdm
def extract_features(parent_dir, sub_dirs, max_file=10, file_ext="*.wav"):
    c = 0
    label, feature = [], []
    for sub_dir in sub_dirs:
        for fn in tqdm(glob.glob(os.path.join(parent_dir, sub_dir, file_ext))[:max_file]): # 遍历数据集的所有文件
            
           # segment_log_specgrams, segment_labels = [], []
            #sound_clip,sr = librosa.load(fn)
            #print(fn)
            label_name = fn.split('/')[-2]
            label.extend([label_dict[label_name]])
            X, sample_rate = librosa.load(fn,res_type='kaiser_fast')
            mels = np.mean(librosa.feature.melspectrogram(y=X,sr=sample_rate).T,axis=0) # 计算梅尔频谱(mel spectrogram),并把它作为特征
            feature.extend([mels])
            
    return [feature, label]
# 自己更改目录
parent_dir = './train_sample/'
save_dir = "./"
folds = sub_dirs = np.array(['aloe','burger','cabbage','candied_fruits',
                             'carrots','chips','chocolate','drinks','fries',
                            'grapes','gummies','ice-cream','jelly','noodles','pickles',
                            'pizza','ribs','salmon','soup','wings'])

# 获取特征feature以及类别的label
temp = extract_features(parent_dir,sub_dirs,max_file=100)
temp = np.array(temp)
data = temp.transpose()
# 获取特征
X = np.vstack(data[:, 0])

# 获取标签
Y = np.array(data[:, 1])
print('X的特征尺寸是:',X.shape)
print('Y的特征尺寸是:',Y.shape)
# 在Keras库中:to_categorical就是将类别向量转换为二进制(只有0和1)的矩阵类型表示
Y = to_categorical(Y)
'''最终数据'''
print(X.shape)
print(Y.shape)
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state = 1, stratify=Y)
print('训练集的大小',len(X_train))
print('测试集的大小',len(X_test))
X_train = X_train.reshape(-1, 16, 8, 1)
X_test = X_test.reshape(-1, 16, 8, 1)

2. 建立模型(本次重点,之前的详细分析有需要的可以看之前的几篇文章)

2.1 深度学习框架

Keras 是一个用 Python 编写的高级神经网络 API,它能够以 TensorFlow, CNTK, 或者 Theano 作为后端运行。Keras 的开发重点是支持快速的实验。能够以最小的时延把你的想法转换为实验结果,是做好研究的关键。

如果你在以下情况下需要深度学习库,请使用 Keras:

  • 允许简单而快速的原型设计(由于用户友好,高度模块化,可扩展性)。

  • 同时支持卷积神经网络和循环神经网络,以及两者的组合。

  • 在 CPU 和 GPU 上无缝运行。
    官方文档:Keras 中文文档

使用Keras搭建一个神经网络:
在这里插入图片描述

2.1.1 网络模型搭建(本处是CNN网络)

Keras 模型

Keras提供的模型,其中分为两类:

Sequential 顺序模型
Model 类模型

我们可以通过 from keras.models import Sequential 或者 from keras.models import Model 来导入对应的模型。
本次使用的是 Sequential 顺序模型官方文档

2.1.2 CNN网络

卷积神经网络CNN的结构一般包含这几个层:

1)输入层:用于数据的输入

2)卷积层:使用卷积核进行特征提取和特征映射------>可以多次重复使用

3)激励层:由于卷积也是一种线性运算,因此需要增加非线性映射(也就是激活函数)

4)池化层:进行下采样,对特征图稀疏处理,减少数据运算量----->可以多次重复使用

5)Flatten操作:将二维的向量,拉直为一维的向量,从而可以放入下一层的神经网络中

6)全连接层:通常在CNN的尾部进行重新拟合,减少特征信息的损失----->DNN网络

对于Keras操作中,可以简单地使用 .add() ,将需要搭建的神经网络的layer堆砌起来,像搭积木一样:
如果需要,你还可以进一步地配置你的优化器.complies()。Keras 的核心原则是使事情变得相当简单,同时又允许用户在需要的时候能够进行完全的控制(终极的控制是源代码的易扩展性)。

一些代码图例(转载自:参考文献
1.keras网络结构
在这里插入图片描述

2.keras网络配置
在这里插入图片描述

其中回调函数callbacks应该是keras的精髓~
3.keras预处理功能
在这里插入图片描述
所以本次代码为添加了两层卷积层,两层池化层,一层Dropout层防止过拟合。

2.2 代码

model = Sequential()
# 输入的大小
input_dim = (16, 8, 1)
model.add(Conv2D(64, (3, 3), padding = "same", activation = "tanh", input_shape = input_dim))# 卷积层
model.add(MaxPool2D(pool_size=(2, 2)))# 最大池化
model.add(Conv2D(128, (3, 3), padding = "same", activation = "tanh")) #卷积层
model.add(MaxPool2D(pool_size=(2, 2))) # 最大池化层
model.add(Dropout(0.1))
model.add(Flatten()) # 展开
model.add(Dense(1024, activation = "tanh"))
model.add(Dense(20, activation = "softmax")) # 输出层:20个units输出20个类的概率
# 编译模型,设置损失函数,优化方法以及评价标准
model.compile(optimizer = 'adam', loss = 'categorical_crossentropy', metrics = ['accuracy'])

3. CNN模型训练和测试

3.1 模型训练

Keras model.fit()参数

参数作用
batch_size整数 ,每次梯度更新的样本数。未指定,默认为32
epochs整数,训练模型迭代次数

参考文献:Keras model.fit()参数详解

3.2 代码

# 训练模型
model.fit(X_train, Y_train, epochs = 90, batch_size = 50, validation_data = (X_test, Y_test))
#查看网络的统计信息
model.summary()

4.生成预测测试集(提交结果)

4.1 分析

略,基本使用已经在之前的baseline中已经写过,此处略过,有需要时请点击链接

4.2 代码

def extract_features(test_dir, file_ext="*.wav"):
    feature = []
    for fn in tqdm(glob.glob(os.path.join(test_dir, file_ext))[:]): # 遍历数据集的所有文件
        X, sample_rate = librosa.load(fn,res_type='kaiser_fast')
        mels = np.mean(librosa.feature.melspectrogram(y=X,sr=sample_rate).T,axis=0) # 计算梅尔频谱(mel spectrogram),并把它作为特征
        feature.extend([mels])
    return feature


X_test = extract_features('./test_a/')

5. 问题

1.为什么要将形状转为(-1, 16, 8, 1)而不是直接使用?
2.最后几步的目的是什么?(下为最后几步代码)

X_test = np.vstack(X_test)
predictions = model.predict(X_test.reshape(-1, 16, 8, 1))


preds = np.argmax(predictions, axis = 1)
preds = [label_dict_inv[x] for x in preds]

path = glob.glob('./test_a/*.wav')
result = pd.DataFrame({'name':path, 'label': preds})

result['name'] = result['name'].apply(lambda x: x.split('/')[-1])
result.to_csv('submit.csv',index=None)


!ls ./test_a/*.wav | wc -l


!wc -l submit.csv
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值