基于双层Bi-LSTM的情感分析

该博客介绍了双层双向LSTM在情感分析中的应用,详细阐述了LSTM的内部状态和门控机制,包括遗忘门、输入门和输出门的工作原理。作者通过调整模型超参数,如max_seq_len、hidden-dim、batch-size和dropout rate,最终在验证集上达到0.8926±0.0027的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于双层Bi-LSTM神经网络的情感分析

LSTM介绍

长短期记忆网络(Long Short-Term Memory NetWork,LSTM)是循环神经网络的一个变体,可以有效地解决简单循环神经网络的梯度爆炸或消失问题。将其按照时序展开如下图所示。
在这里插入图片描述
其中, x 1 , x 2 , x 3 . . . x t x_{1},x_{2},x_{3}...x_{t} x1,x2,x3...xt为每个时刻的输入, c 1 , c 2 , c 3 . . . c t c_{1},c_{2},c_{3}...c_{t} c1,c2,c3...ct为每个时刻的内部状态, h 1 , h 2 , h 3 . . . h t h_{1},h_{2},h_{3}...h_{t} h1,h2,h3...ht为每个时刻的外部状态。
循环单元结构如下图所示:
在这里插入图片描述

图片引自邱锡鹏教授所著《神经网络与深度学习》,本节内容参考此书。

在简单循环神经网络的基础上,LSTM主要改进在以下两个方面:

1.新的内部状态

LSTM引入一个新的内部状态c t _t tR D ^D D,专门进行线性的循环信息传递,同时输出信息给隐藏层的外部状态h t _t tR D ^D D,内部状态通过下面的公式计算:
在这里插入图片描述其中,f t _t t∈[0,1] D ^D Di t _t t∈[0,1] D ^D Do t _t

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值