子集和问题(回溯法)

题目描述

给定一个含有n个元素的整形数组a,再给定一个和sum,求出数组中满足给定和的所有元素组合,举个例子,设有数组a[6] = { 1, 2, 3, 4, 5, 6 },sum = 10,则满足和为10的所有组合是

{1, 2, 3, 4}
{1, 3, 6}
{1, 4, 5}
{2, 3, 5}
{4, 6}

注意,这是个n选m的问题,并不是两两组合问题

解法一:穷举法

最直观的想法就是穷举,把数组中元素的所有组合情况都找出来,然后看看哪些组合满足给定的和即可,这种方法的计算量非常大,是指数级的,假设数组有n个元素,那么所有组合的情况一共有2 ^ n种(包括空集),如果n很大的话,这个方法将会非常慢。那么如何找出所有这些组合呢?其实对于任意一个组合来讲,数组a中任意一个元素要么在这个组合中,要么不在这个组合中,我们用1表示在,用0表示不在,那么每一种组合实际上对应着一个01序列,而这个序列对应着一个十进制数,一共有多少种这样的序列呢?前面说了,是2 ^ n种,分别对应1 - 2 ^ n中的每一个十进制数,所以我们只需遍历这些数字,确定哪些位是1,将数组a中对应的数字放入组合中,再检查一下这个组合的和是否为sum即可。举个例子,在题目描述中我们说到a[6] = { 1, 2, 3, 4, 5, 6 },sum = 10,那么

{1, 2, 3, 4} 相当于 111100 (1, 2, 3, 4在组合中,而5, 6不在)

{1, 3, 6} 相当于101001

数组a有6个元素,所以我们要搜索64个数,只有上面的三种组合满足条件,其他的全部淘汰。

代码-输出函数
// 输出一种组合,该组合取决于参数i
// 将参数i写成二进制的形式,对于i中取值为1的位,取数组a中对应的元素放到组合中
// n是数组a中元素个数
// 在取a中元素的时候,方向是从后向前的,因为我们测试i中哪些位是1的时候是从右向左进行的。
void Output(int* a, int n, int i)
{
    int k = n - 1 ;
    while(i > 0)
    {
        if(i & 1)
            cout << a[k] << ", ";
        --k ;
        i >>= 1 ;
    }
    cout << endl ;
}
代码-主函数
void FixedSum(int* a, int n, int sum)
{
    int total = (1 << n) ; //组合总数
    for(int i = 1; i < total; ++i)
    {
        int t = i ;
        int s = 0 ;
        int k = n - 1 ;
        while(t > 0)
        {
            if(t & 1)
                s += a[k] ;
            --k ;
            t >>= 1 ;
        }

        if(s == sum)
            Output(a, n, i) ;
    }
}

解法二:回溯法

很多数排列组合问题都可以用回溯法来解决,回溯相比上面方法的优点就是减少可行解搜索的范围,因为回溯一旦发现当前解不满足条件就会停止搜索,回溯并进入下一个分支进行搜索,比上面的方法快很多,这里使用的是回溯法中的子集树模型。对于数组中任意一个元素,先将其放入结果集中,如果当前和不超出给定和,那就继续考察下一个元素,如果超出给定和,则舍弃当前元素。如此往复,直到找到所有可行解。

首先定义一个标志位数组flag[],flag[i]如果为true,则表示a[i]在当前解中,如果flag[i]为false则表示不在。这个数组元素个数与数组a的元素个数相同。

bool flag[100] = { false };
代码-输出函数
//输出一种组合,该组合有n个元素
void Output(int* a, int n)
{
    for(int i = 0; i < n; ++i)
    {
        if(flag[i])
            cout << a[i] << ", " ;
    }
    cout << endl ;
}
代码-主函数
// a: 待搜索的数组
// n: 数组元素个数
// t: 已经存储的元素个数
// sum: 给定的和
void FixedSum(int* a, int n, int t, int sum)
{
   if(sum == 0)
        Output(a, t) ;
    else
    {
        if(t == n)
            return ;
        else
        {
            flag[t] = true ;
            if(sum - a[t] >= 0)
                FixedSum(a, n, t + 1, sum - a[t]) ;
            flag[t] = false ;
            if(sum >= 0)
                FixedSum(a, n, t + 1, sum) ;
        }
    }
}

出处:https://www.cnblogs.com/graphics/archive/2011/07/14/2105195.html

  • 6
    点赞
  • 31
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
子集问题是一个经典的NP完全问题,其问题描述为:给定一个非负整数集合和一个目标整数,判断是否能从集合中选取若干个数字,使得它们的和等于目标整数。 子集问题可以使用回溯法来解决,其基本思路是:对于集合中的每个数,可以选择选取或者不选取,然后递归的向下搜索,直到找到一个合法的解或者遍历完所有可能的情况。回溯法的难点主要包括以下几个方面: 1. 如何表示状态和解空间 在子集问题中,状态可以表示为已经选取的数字和当前的和,解空间可以表示为所有可能的选取方案。在回溯法中,通常使用一个数组来表示选取状态,同时使用一个变量来记录当前的和。 2. 如何剪枝 由于子集问题是NP完全问题,其时间复杂度非常高,因此需要进行剪枝来减少搜索空间,提高算法效率。常用的剪枝包括:排序、限界、剩余元素和等。 3. 如何遍历解空间 在回溯法中,需要遍历所有可能的解,通常使用递归函数来实现。在子集问题中,可以使用一个循环来枚举每个数字,然后在递归函数中选择选取或者不选取该数字,继续向下搜索。 4. 如何处理解 在找到一个合法的解时,需要进行相应的处理,例如输出解、统计解的个数等。在子集问题中,可以使用一个标记数组来记录哪些数字被选取,然后输出选取的数字即可。 总之,子集问题虽然看似简单,但是在实现回溯法时仍然需要注意上述难点,才能达到较好的算法效率和正确性。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值