【数学建模笔记 20】数学建模的偏微分方程的数值解

本文介绍了偏微分方程的数值解法,特别是椭圆型和双曲型方程。对于椭圆型方程,如拉普拉斯方程,通过差分法建立近似差分方程,例如五点菱形格式。在双曲型方程中,通过变换和矩阵运算简化问题,然后采用有限差分法进行求解。这些方法在解决复杂的物理问题中具有重要意义。
摘要由CSDN通过智能技术生成

20. 偏微分方程的数值解

定解问题

各种物理性质的定常过程都可用椭圆型方程描述
Δ u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = f ( x , y ) , \Delta u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=f(x,y), Δu=x22u+y22u=f(x,y),
f ( x , y ) = 0 f(x,y)=0 f(x,y)=0 时,即拉普拉斯方程
Δ u = ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = 0. \Delta u=\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=0. Δu=x22u+y22u=0.
第一边值问题
{ ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = f ( x , y ) , ( x , y ) ∈ Ω , u ( x , y ) ∣ ( x , y ) ∈ Γ = φ ( x , y ) , Γ = ∂ Ω . \left\{\begin{aligned} &\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=f(x,y),(x,y)\in\Omega,\\ &u(x,y)|_{(x,y)\in\Gamma}=\varphi(x,y),\Gamma=\partial\Omega. \end{aligned}\right. x22u+y22u=f(x,y),(x,y)Ω,u(x,y)(x,y)Γ=φ(x,y),Γ=Ω.
其中 Ω \Omega Ω​ 为以 Γ \Gamma Γ 为边界的有界区域, Γ \Gamma Γ 为分段光滑曲线, Ω ∪ Γ \Omega\cup\Gamma ΩΓ 称定解区域, f ( x , y ) , φ ( x , y ) f(x,y),\varphi(x,y) f(x,y),φ(x,y) 分别为 Ω , Γ \Omega,\Gamma Ω,Γ 上的已知连续函数。

差分解法

椭圆型

考虑第一边值问题
{ ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = f ( x , y ) , ( x , y ) ∈ Ω , u ( x , y ) ∣ ( x , y ) ∈ Γ = φ ( x , y ) , Γ = ∂ Ω . \left\{\begin{aligned} &\frac{\partial^2u}{\partial x^2}+\frac{\partial^2u}{\partial y^2}=f(x,y),(x,y)\in\Omega,\\ &u(x,y)|_{(x,y)\in\Gamma}=\varphi(x,y),\Gamma=\partial\Omega. \end{aligned}\right. x22u+y22u=f(x,y),(x,y)Ω,u(x,y)(x,y)Γ=φ(x,y),Γ=Ω.
h , τ h,\tau h,τ 分别为 x , y x,y x,y​ 方向的步长,记
( k , j ) = ( x k , y j ) , u ( k , j ) = u ( x k , y j ) , f k , j = f ( x k , y j ) , (k,j)=(x_k,y_j),u(k,j)=u(x_k,y_j),f_{k,j}=f(x_k,y_j), (k,j)=(xk,yj),u(k,j)=u(xk,yj),fk,j=f(xk,yj),
则由二阶差商公式
∂ 2 u ∂ x 2 ∣ k , j = u ( k + 1 , j ) − 2 u ( k , j ) + u ( k − 1 , j ) h 2 + O ( h 2 ) , \frac{\partial^2u}{\partial x^2}|_{k,j}=\frac{u(k+1,j)-2u(k,j)+u(k-1,j)}{h^2}+O(h^2), x22uk,j=h2u(k+1,j)2u(k,j)+u(k1,j)+O(h2),

∂ 2 u ∂ y 2 ∣ k , j = u ( k , j + 1 ) − 2 u ( k , j ) + u ( k , j − 1 ) τ 2 + O ( τ 2 ) \frac{\partial^2u}{\partial y^2}|_{k,j}=\frac{u(k,j+1)-2u(k,j)+u(k,j-1)}{\tau^2}+O(\tau^2) y22uk,j=τ2u(k,j+1)2u(k,j)+u(k,j1)+O(τ2)

于是有
u ( k + 1 , j ) − 2 u ( k , j ) + u ( k − 1 , j ) h 2 \frac{u(k+1,j)-2u(k,j)+u(k-1,j)}{h^2} h2u(k+1,j)2u(k,j)+u(k1,j)

+ u ( k , j + 1 ) − 2 u ( k , j ) + u ( k , j − 1 ) τ 2 +\frac{u(k,j+1)-2u(k,j)+u(k,j-1)}{\tau^2} +τ2u(k,j+1)2u(k,j)+u(k,j1)

= f k , j + O ( h 2 + τ 2 ) . =f_{k,j}+O(h^2+\tau^2). =fk,j+O(h2+τ2).

略去 O ( h 2 + τ 2 ) O(h^2+\tau^2) O(h2+τ2) 得近似的差分方程
u k + 1 , j − 2 u k , j + u k − 1 , j h 2 + u k , j + 1 − 2 u k , j + u k , j − 1 τ 2 = f k , j . \frac{u_{k+1,j}-2u_{k,j}+u_{k-1,j}}{h^2}+\frac{u_{k,j+1}-2u_{k,j}+u_{k,j-1}}{\tau^2}=f_{k,j}. h2uk+1,j2uk,j+uk1,j+τ2uk,j+12uk,j+uk,j1=fk,j.
称五点菱形格式。

实际计算时常取 h = τ h=\tau h=τ,得
1 h 2 ( u k + 1 , j + u k − 1 , j + u k , j + 1 + u k , j − 1 − 4 u k , j ) = f k , j , \frac{1}{h^2}(u_{k+1,j}+u_{k-1,j}+u_{k,j+1}+u_{k,j-1}-4u_{k,j})=f_{k,j}, h21(uk+1,j+uk1,j+uk,j+1+uk,j14uk,j)=fk,j,

1 h 2 ♢ u k , j = f k , j , \frac{1}{h^2}\diamondsuit u_{k,j}=f_{k,j}, h21uk,j=fk,j,
其中
♢ u k , j = u k + 1 , j + u k − 1 , j + u k , j + 1 + u k , j − 1 − 4 u k , j . \diamondsuit u_{k,j}=u_{k+1,j}+u_{k-1,j}+u_{k,j+1}+u_{k,j-1}-4u_{k,j}. uk,j=uk+1,j+uk1,j+uk,j+1+uk,j14uk,j.

双曲型

考虑
∂ 2 u ∂ t 2 = a 2 ∂ 2 u ∂ x 2 . \frac{\partial^2u}{\partial t^2}=a^2\frac{\partial^2u}{\partial x^2}. t22u=a2x22u.
v 1 = ∂ u ∂ t , v 2 = ∂ u ∂ x v_1=\frac{\partial u}{\partial t},v_2=\frac{\partial u}{\partial x} v1=tu,v2=xu​,则有
{ ∂ v 1 ∂ t = a 2 ∂ v 2 ∂ x , ∂ v 2 ∂ t = a 2 ∂ v 1 ∂ x . \left\{\begin{aligned} &\frac{\partial v_1}{\partial t}=a^2\frac{\partial v_2}{\partial x},\\ &\frac{\partial v_2}{\partial t}=a^2\frac{\partial v_1}{\partial x}. \end{aligned}\right. tv1=a2xv2,tv2=a2xv1.
v = ( v 1 , v 2 ) T v=(v_1,v_2)^T v=(v1,v2)T,则有
∂ v ∂ t = ( 0 a 2 1 0 ) ∂ v ∂ x = A ∂ v ∂ x . \frac{\partial v}{\partial t}=\begin{pmatrix} 0&a^2\\ 1&0 \end{pmatrix}\frac{\partial v}{\partial x}=A\frac{\partial v}{\partial x}. tv=(01a20)xv=Axv.
存在矩阵 P P P,使得
P A P − 1 = ( a 0 0 − a ) = Λ . PAP^{-1}=\begin{pmatrix} a&0\\ 0&-a \end{pmatrix}=\Lambda. PAP1=(a00a)=Λ.
作变换 w = P v = ( w 1 , w 2 ) T w=Pv=(w_1,w_2)^T w=Pv=(w1,w2)T,则有
∂ w ∂ t = Λ ∂ w ∂ x . \frac{\partial w}{\partial t}=\Lambda\frac{\partial w}{\partial x}. tw=Λxw.
而对于一阶双曲型方程,取 x , t x,t x,t 方向步长分别为 h , τ h,\tau h,τ,则有
u k , j + 1 − u k , j τ + a u k + 1 , j − u k , j h = 0 , \frac{u_{k,j+1}-u_{k,j}}{\tau}+a\frac{u_{k+1,j}-u_{k,j}}{h}=0, τuk,j+1uk,j+ahuk+1,juk,j=0,

u k , j + 1 − u k , j τ + a u k , j − u k − 1 , j h = 0 , \frac{u_{k,j+1}-u_{k,j}}{\tau}+a\frac{u_{k,j}-u_{k-1,j}}{h}=0, τuk,j+1uk,j+ahuk,juk1,j=0,

u k , j + 1 − u k , j τ + a u k + 1 , j − u k − 1 , j 2 h = 0. \frac{u_{k,j+1}-u_{k,j}}{\tau}+a\frac{u_{k+1,j}-u_{k-1,j}}{2h}=0. τuk,j+1uk,j+a2huk+1,juk1,j=0.

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值