数学建模笔记(八):微分方程的应用(偏微分方程)


一、微分方程概述

1.什么是微分方程

在这里插入图片描述

2.求解方法

(一)求精确解

计算出来

(二)求数值解(近似解)

用数学软件可以模拟出来

(三)定性理论方法

分析解的情况,满足何种性态
在这里插入图片描述

3.建立微分模型的方法

(一)根据定理规律列方程

(二)微元分析法

(三)模拟近似法

在这里插入图片描述
在这里插入图片描述

4.适用问题

在这里插入图片描述

5.常见动态模型

在这里插入图片描述


二、观众厅地面设计

1.问题背景

在这里插入图片描述

2.模型假设

在这里插入图片描述

3.模型建立

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.模型求解

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.总结与讨论

在这里插入图片描述


三、古尸年代鉴定问题

1.问题背景

在这里插入图片描述

2.建模求解

在这里插入图片描述

3.模型修正

在这里插入图片描述


四、正规战和游击战模型

1.问题背景

在这里插入图片描述
在这里插入图片描述

2.模型假设

在这里插入图片描述

3.模型建立与求解

双方采取相同战略时
在这里插入图片描述
由k值判断情况
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
混合战斗时
在这里插入图片描述


五、万有引力定律的发现

1.问题背景

在这里插入图片描述

2.模型建立与求解

在这里插入图片描述

在这里插入图片描述


六、偏微分方程概述

1.概述

在这里插入图片描述

2.简单一阶偏微分方程求解

在这里插入图片描述


七、交通流

1.问题背景

在这里插入图片描述
在这里插入图片描述

2.模型假设

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


八、二阶偏微分方程

1.一般形式(根据 d e l t a delta delta区分的三类偏微分方程)

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.弦振动方程模型(双曲型偏微分方程)

(一)介绍

在这里插入图片描述
在这里插入图片描述

(二)例子——斜拉桥的钢索问题

在这里插入图片描述

3.热传导方程模型(抛物型方程)

(一)介绍

在这里插入图片描述
在这里插入图片描述

(二)例子——不同深度的溶氧浓度

4.调和方程模型(椭圆型方程)

(一)介绍

在这里插入图片描述

(二)例子——生物体内各点的电位

在这里插入图片描述


九、烟雾的扩散与消失(二阶偏微分方程)

1.问题背景

在这里插入图片描述

2.问题分析

在这里插入图片描述

在这里插入图片描述

3.模型假设与建立

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

4.结果计算

在这里插入图片描述

5.结果分析

在这里插入图片描述


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值