动态规划算法练习——6、不同的二叉搜索树(python和C++描述)

来源:代码随想录
本题的力扣链接:https://leetcode-cn.com/problems/unique-binary-search-trees/

1、题目描述:

在这里插入图片描述

2、思路:

太菜,只能把官方的思路拿过来了。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3、代码:

3.1 python代码:

class Solution:
    def numTrees(self, n: int) -> int:
        dp = [0 for _ in range(n+1)]
        dp[0], dp[1] = 1, 1 # dp数组边界初始化
        
        for i in range(2, n+1): # 遍历到的i作为根节点
            for j in range(1, i+1): # 以i为根节点,求左右子树可构建的种类
                dp[i] += dp[j-1] * dp[i-j] # 递推公式
        
        return dp[n]

在这里插入图片描述

3.2 C++代码:

class Solution {
public:
    int numTrees(int n) {
        vector<int> dp(n+1);
        dp[0] = 1; dp[1] = 1; // dp数组边界初始化

        for(int i = 2; i <= n; i++){ // 这个遍历,就是以i为根节点
            for(int j = 1; j <= i; j++){ // 然后求i的左右子树能构建二叉搜索树的个数
                dp[i] += dp[j-1] * dp[i-j]; // 递推公式
            }
        }
    
    return dp[n];
    }
};

在这里插入图片描述

4、总结:

二叉搜索树就是:左子树比父节点小,右子树比父节点大。然后在构造二叉搜索树的时候,遍历这些节点,每次遍历时把当前的节点作为根节点,那么左子树和右子树依然按这样的方式构造。因此,可知原问题能分解成两个规模较小的子问题,且子问题可以复用,即,子问题的解能推导出总问题的解。所以,可以使用动态规划的方法求解此问题。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值