组合数学(总结)

阳辉三角

适用于范围比较小的数,复杂度是\(O(n^2)\)
用到公式\(dp[i][j]=(dp[i-1][j]+dp[i-1][j-1])%mod\)

ll hoppy,lad;
ll equip[2021][2021];
void search(){
	equip[0][0]=1;	
	for(int i=1;i<=2000;i++){
		equip[i][0]=1;
		for(int j=1;j<=i;j++){
			equip[i][j]=(equip[i-1][j]+equip[i-1][j-1])%mod;
		}
	}
}
void solve()
{
	cin>>hoppy>>lad;
	cout<<equip[hoppy][lad]<<endl;
	
}

逆元来求组合数

复杂度是O(NlogN)的.原理是:

\[C_n^m=n!/(m!(n-m)!) \]

那么我们就可以用逆元来表示\(1/m!\)\(1/(n-m)!\)这样就将除法转化成了乘法.

ll hoppy,lad;
ll equip[maxn],frown[maxn];

ll qpow(ll hoppy1,ll lad1){
	ll ans=1;
	while(lad1){
		if(lad1&1) ans=ans*hoppy1%mod;
		lad1>>=1;
		hoppy1=hoppy1*hoppy1%mod;
	}
	return ans;
}
void search(){	
	equip[0]=1;
	frown[0]=1;
	for(int i=1;i<=1e5;i++){
		equip[i]=equip[i-1]*i%mod;
		frown[i]=frown[i-1]*qpow(i,mod-2)%mod;
	}
}
ll C(ll hoppy,ll lad){
	return equip[hoppy]*frown[lad]%mod*frown[hoppy-lad]%mod;
}
void solve()
{
	cin>>hoppy>>lad;
	cout<<C(hoppy,lad)<<endl;
}

Lucas定理求组合数

先说下Lucas定理:\(C_n^m\ mod\ p=C_{n\%p}^{m\%p}C_{n/p}^{m/p}\)
推到过程是利用了多项式,

\[n=n_0p^0+n_1p^1+n_2p^2+.....+n_xp^x \]
\[m=m_0p^0+m_1p^1+m_2p^2+.....+m_xp^x \]
ll qpow(ll hoppy1,ll lad1,ll mod){
	ll ans=1;
	while(lad1){
		if(lad1&1) ans=ans*hoppy1%mod;
		lad1>>=1;
		hoppy1=hoppy1*hoppy1%mod;
	}
	return ans;
}

ll C(ll hoppy,ll lad,ll mod){
	ll a=1,b=1;
	for(int i=1;i<=lad;i++){
		a=a*(hoppy-i+1)%mod;
		b=b*i%mod;
	}
	return a*qpow(b,mod-2,mod)%mod;
}
ll lucas(ll a,ll b){
	if(a<p&&b<p) return C(a,b,p);
	return C(a%p,b%p,p)*lucas(a/p,b/p)%p;
}
void solve()
{
	cin>>hoppy>>lad>>p;
	
	cout<<lucas(hoppy,lad)<<endl;
	
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值