快速傅里叶变换

用途 O ( n l o g n ) O(nlog_n) O(nlogn)复杂度内解决多项式乘法 比 O ( N 2 ) O(N^2) O(N2)要优

A ( x ) = a 0 + a 1 x + . . . + a n x n A(x)=a_0+a_1x+...+a_nx^n A(x)=a0+a1x+...+anxn

性质一:可以用n+1个点,表示一个n次多项式

证明用高斯消元,范德蒙行列式满秩唯一解。

点表示法:

如果多项式乘积为: C ( x ) = A ( x ) B ( x ) C(x)=A(x)B(x) C(x)=A(x)B(x)

那么:如果A(x)是n次的,B(x)是m次的,那么我们能用n+m+1个点表示C(x)。

x 1 , x 2 , x 3 . . . . . x n + m + 1 x_1,x_2,x_3.....x_{n+m+1} x1,x2,x3.....xn+m+1

A对应的点为: ( x 1 , A ( x 1 ) ) , ( x 2 , A ( x 2 ) . . . . ( x n + m + 1 , A ( x n + m + 1 ) ) (x_1,A(x_1)),(x_2,A(x_2)....(x_{n+m+1},A(x_{n+m+1})) (x1,A(x1)),(x2,A(x2)....(xn+m+1,A(xn+m+1))

B对应的点为: ( x 1 , B ( x 1 ) ) , ( x 2 , B ( x 2 ) . . . . ( x n + m + 1 , B ( x n + m + 1 ) ) (x_1,B(x_1)),(x_2,B(x_2)....(x_{n+m+1},B(x_{n+m+1})) (x1,B(x1)),(x2,B(x2)....(xn+m+1,B(xn+m+1))

我们知道C(x)=A(x)B(x)

那么C对应的点为: ( x 1 , A ( x 1 ) B ( x 1 ) ) , ( x 2 , A ( x 2 ) B ( x 2 ) . . . . ( x n + m + 1 , A ( x n + m + 1 ) B ( x n + m + 1 ) ) (x_1,A(x_1)B(x_1)),(x_2,A(x_2)B(x_2)....(x_{n+m+1},A(x_{n+m+1})B(x_{n+m+1})) (x1,A(x1)B(x1)),(x2,A(x2)B(x2)....(xn+m+1,A(xn+m+1)B(xn+m+1))

所以我们可以通过O(n+m)表示出来C(x);

所以我们希望从系数表示法转化成点表示法,在从点表示法转化成系数表示法。

复数

欧拉公式证明:

证明过程参考繁凡博客吧。
https://www.wolai.com/naS2MSmNf2imHpmYtEpUtF#bedxV3DwQ7wfDDThBQg78S

在这里插入图片描述

递归版:未运行出来:

///FFT递归版
#include <bits/stdc++.h>
using namespace std;

const double pi = acos(-1);
const int N = 300;
struct Complex
{
    double x, y;
    Complex(double x = 0, double y = 0): x(x), y(y) {}
} A[N], B[N];
Complex operator * (Complex J, Complex Q)
{
    //模长相乘,幅度相加
    return Complex(J.x * Q.x - J.y * Q.y, J.x * Q.y + J.y * Q.x);
}
Complex operator - (Complex J, Complex Q)
{
    return Complex(J.x - Q.x, J.y - Q.y);
}
Complex operator + (Complex J, Complex Q)
{
    return Complex(J.x + Q.x, J.y + Q.y);
}

void FFT(int limit, Complex *a, int type)
{
    if(limit == 1) return ;//常数项
    Complex a1[limit / 2], a2[limit / 2]; //分成两端,左右两端平分
    for(int i = 0; i <= limit; i += 2) //偶数项,奇数项
    {
        a1[i / 2] = a[i];
        a2[i / 2] = a[i + 1];
    }
    FFT(limit / 2, a1, type);
    FFT(limit / 2, a2, type);
    Complex tmp = Complex(cos(2.0 * pi / limit), type * sin(2.0 * pi / limit)), w = Complex(1, 0);
    ///tmp表示单位根,w表示幂。
    for(int i = 0; i < (limit /2); i++, w = w * tmp)
    {
        a[i] = a1[i] + w * a2[i]; //左加
        a[i + limit / 2] = a1[i] - w * a2[i]; //右减
    }
}
int main()
{
    int n, m;
    scanf("%d%d", &n, &m);
    for(int i = 0; i <= n; i++)scanf("%lf", &A[i].x);
    for(int i = 0; i <= m; i++)scanf("%lf", &B[i].x);

    int limit = 1;
    while(limit <= n + m) limit *= 2; //2的整数次幂

    FFT(limit, A, 1);
    FFT(limit, B, 1);
    //后面的1表示要进行的变换是什么类型
    // 1表示从系数变为点值
    //-1表示从点值变为系数
    //这就与推导过程中的 w指数部分正负有关。
    for(int i = 0; i <= limit; i++)
    {
        A[i] = A[i] * B[i];
    }
    FFT(limit, A, -1);

    for(int i = 0;i <= n + m; i++)
    {
        printf("%d ", (int)(A[i].x / limit + 0.5)); ///对其四舍五入+0.5
    }

    return 0;
}

迭代版

蝴蝶变换

///迭代版
#include <bits/stdc++.h>
using namespace std;

const int N = 5e6 + 7;
const double PI = acos(-1);

int n, m;
int limit = 1;
int res, ans[N];
int l;
int r[N];

struct Complex
{
    double x, y;
    Complex (double x = 0, double y = 0) : x(x), y(y) {}
} a[N], b[N];

Complex operator * (Complex J, Complex Q)
{
    //模长相乘,幅度相加
    return Complex(J.x * Q.x - J.y * Q.y, J.x * Q.y + J.y * Q.x);
}
Complex operator + (Complex J, Complex Q)
{
    return Complex(J.x + Q.x, J.y + Q.y);
}
Complex operator - (Complex J, Complex Q)
{
    return Complex(J.x - Q.x, J.y - Q.y);
}
void FFT(Complex *A, int type)
{
    for(int i = 0; i < limit; i++)
    {
        if(i < r[i]) swap(A[i], A[r[i]]); ///保证不在换过去
    }
    ///从底层开始合并:
    for(int mid = 1; mid < limit; mid = mid * 2)
    {
        ///待合并区间长度的一半,最开始是长度为1的合并,类似倍增的思想
        Complex wn(cos(PI / mid), type * sin(PI / mid)); //单位根

        for(int len = mid *2, pos = 0; pos < limit; pos += len)
        {
            ///len是区间的长度,pos是当前的位置
            Complex w(1, 0);
            for(int k = 0; k < mid; k++, w = w * wn)
            {
                ///只扫左半部分,蝴蝶变换得到有半部分。
                Complex x = A[pos + k]; //左半部分
                Complex y = w * A[pos + mid + k]; //右半部分
                A[pos + k] = x + y;//左加
                A[pos + mid + k] = x - y;///右减
            }
        }
    }

    if(type == 1) return ;
    for(int i = 0; i <= limit; i++)
    {
        A[i].x = A[i].x / limit;
        A[i].y = A[i].y / limit;///这个版本没用,加不加没影响,优化的版本必须要加
        ///除以我们推出的N。
    }
}

int main()
{
    cin >> n >> m;

    for(int i = 0; i <= n; i++) scanf("%lf", &a[i].x);
    for(int j = 0; j <= m; j++) scanf("%lf", &b[j].x);

    while(limit <= n + m) limit <<= 1, l++;///求出位数l,和2的整数次幂
    
    for(int i = 0; i < limit; i++)
    {
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));///蝴蝶变换。
    }
    FFT(a, 1);
    FFT(b, 1);

    for(int i = 0; i <= limit; ++i)
    {
        a[i] = a[i] * b[i];
    }

    FFT(a, -1);

    for(int i = 0; i <= m + n; i++)
    {
        printf("%d ", int(a[i].x + 0.5));
    }

    return 0;
}

优化:三步变两步:

设a和b是实多项式, F = a + b i F=a+bi F=a+bi F 2 = a 2 − b 2 + 2 a b i F^2=a^2-b^2+2abi F2=a2b2+2abi ,注意我们要求的是F虚部的一半,这样我们通过两次FFT就可以求出结果了,

所以我们可以把 b ( x ) b(x) b(x)放到a(x)的虚部,求出 a ( x ) 2 a(x)^2 a(x)2然后取出a(x)虚部除以2就是答案。

///优化版
#include <bits/stdc++.h>
using namespace std;

const int N = 5e6 + 7;
const double PI = acos(-1);

int n, m;
int limit = 1;
int res, ans[N];
int l;
int r[N];

struct Complex
{
    double x, y;
    Complex (double x = 0, double y = 0) : x(x), y(y) {}
} a[N], b[N];

Complex operator * (Complex J, Complex Q)
{
    //模长相乘,幅度相加
    return Complex(J.x * Q.x - J.y * Q.y, J.x * Q.y + J.y * Q.x);
}
Complex operator + (Complex J, Complex Q)
{
    return Complex(J.x + Q.x, J.y + Q.y);
}
Complex operator - (Complex J, Complex Q)
{
    return Complex(J.x - Q.x, J.y - Q.y);
}
void FFT(Complex *A, int type)
{
    for(int i = 0; i < limit; i++)
    {
        if(i < r[i]) swap(A[i], A[r[i]]); ///保证不在换过去
    }
    ///从底层开始合并:
    for(int mid = 1; mid < limit; mid = mid * 2)
    {
        ///待合并区间长度的一半,最开始是长度为1的合并,类似倍增的思想
        Complex wn(cos(PI / mid), type * sin(PI / mid)); //单位根

        for(int len = mid *2, pos = 0; pos < limit; pos += len)
        {
            ///len是区间的长度,pos是当前的位置
            Complex w(1, 0);
            for(int k = 0; k < mid; k++, w = w * wn)
            {
                ///只扫左半部分,蝴蝶变换得到有半部分。
                Complex x = A[pos + k]; //左半部分
                Complex y = w * A[pos + mid + k]; //有半部分
                A[pos + k] = x + y;
                A[pos + mid + k] = x - y;
            }
        }
    }

    if(type == 1) return ;
    for(int i = 0; i <= limit; i++)
    {
        A[i].x = A[i].x / limit;
        A[i].y = A[i].y / limit;
        ///除以我们推出的N。
    }
}

int main()
{
    cin >> n >> m;

    for(int i = 0; i <= n; i++) scanf("%lf", &a[i].x);
    for(int j = 0; j <= m; j++) scanf("%lf", &a[j].y);

    while(limit <= n + m) limit <<= 1, l++;


    for(int i = 0; i < limit; i++)
    {
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    }
    FFT(a, 1);
    ///FFT(b, 1);

    for(int i = 0; i <= limit; ++i)
    {
        a[i] = a[i] * a[i];
    }

    FFT(a, -1);

    for(int i = 0; i <= m + n; i++)
    {
        printf("%d ", int(a[i].y/2 + 0.5));
    }

    return 0;
}

例题:P1919 【模板】FFT快速傅里叶变换

///优化版
#include <bits/stdc++.h>
using namespace std;

const int N = 5e6 + 7;
const double PI = acos(-1);

int n, m;
int limit = 1;
int res, ans[N];
int l;
int r[N];

struct Complex
{
    double x, y;
    Complex (double x = 0, double y = 0) : x(x), y(y) {}
} a[N], b[N];

Complex operator * (Complex J, Complex Q)
{
    //模长相乘,幅度相加
    return Complex(J.x * Q.x - J.y * Q.y, J.x * Q.y + J.y * Q.x);
}
Complex operator + (Complex J, Complex Q)
{
    return Complex(J.x + Q.x, J.y + Q.y);
}
Complex operator - (Complex J, Complex Q)
{
    return Complex(J.x - Q.x, J.y - Q.y);
}
void FFT(Complex *A, int type)
{
    for(int i = 0; i < limit; i++)
    {
        if(i < r[i]) swap(A[i], A[r[i]]); ///保证不在换过去
    }
    ///从底层开始合并:
    for(int mid = 1; mid < limit; mid = mid * 2)
    {
        ///待合并区间长度的一半,最开始是长度为1的合并,类似倍增的思想
        Complex wn(cos(PI / mid), type * sin(PI / mid)); //单位根

        for(int len = mid * 2, pos = 0; pos < limit; pos += len)
        {
            ///len是区间的长度,pos是当前的位置
            Complex w(1, 0);
            for(int k = 0; k < mid; k++, w = w * wn)
            {
                ///只扫左半部分,蝴蝶变换得到有半部分。
                Complex x = A[pos + k]; //左半部分
                Complex y = w * A[pos + mid + k]; //有半部分
                A[pos + k] = x + y;
                A[pos + mid + k] = x - y;
            }
        }
    }

    if(type == 1) return ;
    for(int i = 0; i <= limit; i++)
    {
        ans[i] += (int)(A[i].y / limit/2 + 0.5);
        if(ans[i] >= 10) ///考虑进位问题。
        {
            ans[i + 1] = ans[i] / 10;
            ans[i] %= 10;
            limit += (i == limit); ///进位
        }
        ///除以我们推出的N。
    }
}
string str, s;
int main()
{
    cin >> str >> s;
    n = str.size();
    m = s.size();
    int cnt, tot;
    cnt = tot = 0;
    for(int i = n - 1; i >= 0; i--) a[cnt++].x = str[i] - '0';
    for(int i = m - 1; i >= 0; i--) a[tot++].y = s[i] - '0';

    while(limit < n + m) limit <<= 1, l++;

    for(int i = 0; i <= limit; i++)
    {
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    }
    FFT(a, 1);
    ///FFT(b, 1);

    for(int i = 0; i <= limit; ++i)
    {
        a[i] = a[i] * a[i];
    }

    FFT(a, -1);

    while(!ans[limit] && limit >= 1) limit--; ///去除前导0

    limit++;
    while(--limit >= 0)
    {
        cout << ans[limit];
    }

    return 0;
}

正常版。

//正常的
#include <bits/stdc++.h>
using namespace std;

const int N = 5e6 + 7;
const double PI = acos(-1);

int n, m;
int limit = 1;
int res, ans[N];
int l;
int r[N];

struct Complex
{
    double x, y;
    Complex (double x = 0, double y = 0) : x(x), y(y) {}
} a[N], b[N];

Complex operator * (Complex J, Complex Q)
{
    //模长相乘,幅度相加
    return Complex(J.x * Q.x - J.y * Q.y, J.x * Q.y + J.y * Q.x);
}
Complex operator + (Complex J, Complex Q)
{
    return Complex(J.x + Q.x, J.y + Q.y);
}
Complex operator - (Complex J, Complex Q)
{
    return Complex(J.x - Q.x, J.y - Q.y);
}
void FFT(Complex *A, int type)
{
    for(int i = 0; i < limit; i++)
    {
        if(i < r[i]) swap(A[i], A[r[i]]); ///保证不在换过去
    }
    ///从底层开始合并:
    for(int mid = 1; mid < limit; mid = mid * 2)
    {
        ///待合并区间长度的一半,最开始是长度为1的合并,类似倍增的思想
        Complex wn(cos(PI / mid), type * sin(PI / mid)); //单位根

        for(int len = mid * 2, pos = 0; pos < limit; pos += len)
        {
            ///len是区间的长度,pos是当前的位置
            Complex w(1, 0);
            for(int k = 0; k < mid; k++, w = w * wn)
            {
                ///只扫左半部分,蝴蝶变换得到有半部分。
                Complex x = A[pos + k]; //左半部分
                Complex y = w * A[pos + mid + k]; //有半部分
                A[pos + k] = x + y;
                A[pos + mid + k] = x - y;
            }
        }
    }

    if(type == 1) return ;
    for(int i = 0; i <= limit; i++)
    {
        ans[i] += (int)(A[i].x / limit + 0.5);
        if(ans[i] >= 10) ///考虑进位问题。
        {
            ans[i + 1] = ans[i] / 10;
            ans[i] %= 10;
            limit += (i == limit); ///进位
        }
        ///除以我们推出的N。
    }
}
string str, s;
int main()
{
    cin >> str >> s;
    n = str.size();
    m = s.size();
    int cnt, tot;
    cnt = tot = 0;
    for(int i = n - 1; i >= 0; i--) a[cnt++].x = str[i] - '0';
    for(int i = m - 1; i >= 0; i--) b[tot++].x = s[i] - '0';

    while(limit < n + m) limit <<= 1, l++;

    for(int i = 0; i <= limit; i++)
    {
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    }
    FFT(a, 1);
    FFT(b, 1);

    for(int i = 0; i <= limit; ++i)
    {
        a[i] = a[i] * b[i];
    }

    FFT(a, -1);

    while(!ans[limit] && limit >= 1) limit--; ///去除前导0

    limit++;
        while(--limit>=0)
        {
            cout << ans[limit];
        }
    
    return 0;
}

P3338 [ZJOI2014]力

先放上,防止自己咕咕咕

题意:

n个数

q 1 , q 2 , . . . q n q_1,q_2,...q_n q1,q2,...qn定义

F j = ∑ i = 1 j − 1 q i × q j ( i − j ) 2 − ∑ i = j + 1 n q i × q j ( i − j ) 2 F_j = \sum_{i=1}^{j−1}\frac{q_i×q_j}{(i−j)^2} − \sum_{i=j+1}^n\frac{q_i×q_j}{(i−j)^2} Fj=i=1j1(ij)2qi×qji=j+1n(ij)2qi×qj

E i   =   F i q i E_i~=~\frac{F_i}{q_i} Ei = qiFi

让求 E i E_i Ei

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

快速数论变换 (NTT)

#include <bits/stdc++.h>
using namespace std;
#define ll long long
const int N = 5e6 + 7;
const double PI = acos(-1);
const int p = 998244353, G = 3, Gi = 332748118;
int n, m;
int limit = 1;
int res, ans[N];
int l;
int r[N];
ll a[N], b[N];
ll qpow(ll a, ll b)
{
    ll ans = 1;
    while(b)
    {
        if(b & 1) ans = ans * a % p;
        a = a * a % p;
        b >>= 1;
    }
    return ans;
}

void NTT(ll *A, int type)
{
    for(int i = 0; i < limit; i++)
    {
        if(i < r[i]) swap(A[i], A[r[i]]); ///保证不在换过去
    }
    ///从底层开始合并:
    for(int mid = 1; mid < limit; mid = mid * 2)
    {
        ///待合并区间长度的一半,最开始是长度为1的合并,类似倍增的思想
        ll wn = qpow(G, (p - 1) / (mid * 2));
        if(type==-1) wn = qpow(wn, p - 2);

        for(int len = mid * 2, pos = 0; pos < limit; pos += len)
        {
            ///len是区间的长度,pos是当前的位置
            ll w = 1;
            for(int k = 0; k < mid; k++, w = w * wn % p)
            {
                ///只扫左半部分,蝴蝶变换得到有半部分。
                int x = A[pos + k]; //左半部分
                int y = w * A[pos + mid + k] % p; //有半部分
                A[pos + k] = (x + y) % p;
                A[pos + mid + k] = (x - y + p) % p;
            }
        }
    }

    if(type == 1) return ;
    ll inlimit = qpow(limit, p - 2);
    for(int i = 0; i < limit; i++)
    {
        A[i] = (A[i] * inlimit) % p;
        ///除以我们推出的N。
    }
}

int main()
{
    cin >> n >> m;
    for(int i = 0; i <= n; i++) cin >> a[i], a[i] = (a[i] + p) % p;
    for(int i = 0; i <= m; i++) cin >> b[i], b[i] = (b[i] + p) % p;

    while(limit <= n + m) limit <<= 1, l++;
    for(int i = 0; i <= limit; i++)
    {
        r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1));
    }
    NTT(a, 1);
    NTT(b, 1);

    for(int i = 0; i <= limit; ++i)
    {
        a[i] = a[i] * b[i] % p;
    }

    NTT(a, -1);

    for(int i = 0; i <= n + m; i++)  cout << a[i] << " ";

    return 0;
}
  • 11
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值