自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(6)
  • 资源 (1)
  • 收藏
  • 关注

原创 傅里叶变换的性质及证明

傅里叶变换的性质及证明1. 线性性质 F[αf1(t)+βf2(t)]=αF1(ω)+βF2(ω)\qquad F[\alpha f_1(t)+\beta f_2(t)]=\alpha F_1(\omega)+\beta F_2(\omega)F[αf1​(t)+βf2​(t)]=αF1​(ω)+βF2​(ω)证明:KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲F[\alpha f

2021-02-19 22:07:04 15931 2

原创 第五章、留数

第五章、留数1.一般理论留数定义把积分12πi∫Cf(z)dz定义为函数f(z)在孤立奇点z0的留数,记做Res(f,z0)把积分\frac{1}{2\pi i}\int_Cf(z)dz定义为函数f(z)在孤立奇点z_0的留数,记做Res(f,z_0)把积分2πi1​∫C​f(z)dz定义为函数f(z)在孤立奇点z0​的留数,记做Res(f,z0​)定理 1.1设D是在复平面上的一个有界区域,其边界是一条有或有限条简单闭曲线C.设函数f(z)在D内出去有孤立奇点z1,z2,…,zn外,在每一

2021-02-19 14:22:10 611

原创 第四章、级数

第四章、级数1. 级数和序列的基本性质复数序列设z0时一个复常数,如果任给ε>0,可以找到一个正整数N,使得当n>N时,\qquad设z_0时一个复常数,如果任给\varepsilon \gt0,可以找到一个正整数N,使得当n\gt N时,设z0​时一个复常数,如果任给ε>0,可以找到一个正整数N,使得当n>N时,∣z−z0∣<ε|z-z_0|\lt \varepsilon∣z−z0​∣<ε那么我们说zn收敛,记做lim⁡n→+∞zn=z0那么我们说{z_n}收

2021-02-18 22:58:56 390

原创 第三章、复变函数积分

第三章、复变函数的积分1. 柯西定理复变函数的积分 在简单曲线C上,以下四个式子分别有极限:∫Cu(x,y)dx,∫Cv(x,y)dy,∫Cv(x,y)dx,∫Cu(x,y)dy,\int_Cu(x,y)dx,\int_Cv(x,y)dy,\int_Cv(x,y)dx,\int_Cu(x,y)dy,∫C​u(x,y)dx,∫C​v(x,y)dy,∫C​v(x,y)dx,∫C​u(x,y)dy,我们就说和式∫Cux(,y)dx−v(x,y)dy+i∫Cv(x,y)dx+u(x,y)dy,\int_C

2021-02-18 22:54:40 999 1

原创 第二章、复变函数

第二章、复变函数1. 解析函数极限的定义设函数w=f(z)在集E上确定,z0是E的一个聚点,α是一个复常数.如果任给ε>0,可以找到一个与ε有关的正数δ=δ(ε)>0,使得当z∈E,并且0<∣z−z0∣<δ时,\qquad设函数w=f(z)在集E上确定,z_0是E的一个聚点,\alpha是一个复常数.如果任给\varepsilon \gt0,可以找到一个与\varepsilon有关的正数\delta=\delta(\varepsilon)\gt0,使得当z\in E,并且0\l

2021-02-18 22:27:54 530

原创 第一章、复数及复平面

第一章、复数及复平面1. 复数及其几何表示辐角:实轴的正向与向量z之间的夹角,记为Argz=θ+2kπArg z = \theta + 2k\piArgz=θ+2kπ其中只有一个值α满足条件−π<α≤π;叫做幅角的主值,记做arg z\alpha 满足条件-\pi \lt \alpha \leq \pi;叫做幅角的主值,记做arg\ zα满足条件−π<α≤π;叫做幅角的主值,记做arg zRe z=∣z∣cosArg z,Im z

2021-02-18 22:27:27 1171

ceres-2.0.0.zip + suitesparse已编译

基于win10+VS2019,包含release和debug版本,可直接使用

2021-05-01

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除