PAT1019 数字黑洞 分数 20

1019 数字黑洞
分数 20
作者 CHEN, Yue
单位 浙江大学
给定任一个各位数字不完全相同的 4 位正整数,如果我们先把 4 个数字按非递增排序,再按非递减排序,然后用第 1 个数字减第 2 个数字,将得到一个新的数字。一直重复这样做,我们很快会停在有“数字黑洞”之称的 6174,这个神奇的数字也叫 Kaprekar 常数。

例如,我们从6767开始,将得到

7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
… …
现给定任意 4 位正整数,请编写程序演示到达黑洞的过程。

在这里插入图片描述

输入样例 16767
输出样例 17766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174

输入样例 22222
输出样例 22222 - 2222 = 0000

我的代码(24行未ac):

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int main(){
	int n; cin>>n;
    int x = n,a = 0,b = 0;
	vector<int> vv;
    while(x) vv.push_back(x%10),x /= 10;
    if(vv[1]==vv[2]&&vv[1]==vv[3]&&vv[1]==vv[0])	printf("%04d - %04d = %04d\n",n,n,n-n);
    else{
    	while(n!=6174){
    		vector<int> v;
    		while(n) v.push_back(n%10),n /= 10;
	        sort(v.begin(),v.end());
	        b = v[0]*1000+v[1]*100+v[2]*10+v[3];
	        a = v[3]*1000+v[2]*100+v[1]*10+v[0];
	        printf("%04d - %04d = %04d\n",a,b,a-b);
	        n = a-b;
    	}
	}
    return 0;
}

两个样例均通过,却只得13分。经过反复读题和测试,发现题目说的是输入时0~10000的正整数,9这种不是四位数的输入得不到想要的结果。
在这里插入图片描述
接下来考虑吧这种情况纳入代码逻辑。并合并重复的代码,减少代码行数。
我的代码(21行ac):

#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
int main(){
	int n; cin>>n;
    int a = 0,b = 0;
	do{//至少循环一次 
		vector<int> v;
		while(n) v.push_back(n%10),n /= 10;
		if(v.size()<4)	v.push_back(0);//补足4位 
        sort(v.begin(),v.end());//升序 
        reverse(v.begin(),v.end());//翻转 成降序 
        a = v[0]*1000+v[1]*100+v[2]*10+v[3];
        b = v[3]*1000+v[2]*100+v[1]*10+v[0];
        printf("%04d - %04d = %04d\n",a,b,a-b);//注意格式 
        n = a-b;
	}while(n!=6174&&n!=0);
    return 0;
}

对输入9:

9000 - 0009 = 8991
9981 - 1899 = 8082
8820 - 0288 = 8532
8532 - 2358 = 6174

ps:
1.pat网站测试显示通过,对输入9也可以显示正确输出,但在devC++中显示错误输出,可能考虑换ide或者其他方法,之后注意这个问题;
2.do-while循环至少循环一次,用在这题上非常合适;
3.耗时1:30,但感觉最终效果很好。看了网上一个大佬的方法,用string输入来sort()和reverse(),再用stoi()转换为int,结果再用to_string()转换为string,效率不高。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值