数据蒸馏(Data Distillation)基本原理

同步更新:https://www.big-yellow-j.top/posts/2025/03/10/Data-Distillation.html

主要介绍数据蒸馏操作,并且介绍CVPR-2025上海交大满分论文:Dataset Distillation with Neural Characteristic Function: A Minmax Perspective。本文主要是借鉴论文1中的整体结构,大致了解什么是DD而后再去介绍(CVPR-2025)论文。

Data Distillation

数据蒸馏(Data Distillatiob)是一种从大量数据中提取关键信息,生成高质量、小规模合成数据集的技术。它的目标是通过这些合成数据来替代原始数据集,用于模型训练、验证或其他任务,从而提高效率、降低成本或保护隐私。数据蒸馏的核心思想是“从数据中提取数据”,让合成数据集中保留原始数据集的关键特征和分布信息,同时去除冗余和噪声。参考论文1中的描述:

数据蒸馏(DD)目标为:对于一个真实的数据集: T = ( X t , Y t ) \mathrm{T}=(X_t,Y_t) T=(Xt,Yt) 其中 X t ∈ R N × d X_t\in R^{N\times d} XtRN×d 其中 N N N 代表样本数量 d d d 代表特征数量, Y t ∈ R N × C Y_t\in R^{N\times C} YtRN×C 其中 C C C为输出实体。对于蒸馏得到的数据集: S = X s , Y s \mathrm{S}={X_s,Y_s} S=Xs,Ys其中 X s ∈ R M × D X_s\in R^{M\times D} XsRM×D其中 M M M代表数据蒸馏后的样本数量。最终的优化目标为: arg min L ( S , T ) \text{arg min} \mathrm{L}(\mathrm{S}, \mathrm{T}) arg minL(S,T)

比如说对于图像分类任务而言 D D D代表的是:HWC而y代表的是独热编码,C代表类别数量

论文1中对于损失函数优化主要分析3种处理思路

1、Performance Matching

L ( S , T ) = E θ ( 0 ) ∼ Θ [ l ( T ; θ ( T ) ) ] , θ ( t ) = θ ( t − 1 ) − η ∇ l ( S ; θ ( t − 1 ) ) \begin{aligned} \mathcal{L}(\mathcal{S},\mathcal{T}) & =\mathbb{E}_{\theta^{(0)}\sim\Theta}[l(\mathcal{T};\theta^{(T)})], \\ \theta^{(t)} & =\theta^{(t-1)}-\eta\nabla l(\mathcal{S};\theta^{(t-1)}) \end{aligned} L(S,T)θ(t)=Eθ(0)Θ[l(T;θ(T))],=θ(t1)ηl(S;θ(t1))

其中 θ , l , T , η \theta, l, T, \eta θ,l,T,η分别代表:神经网络参数、损失函数、迭代次数、学习率

对于上面公式以及优化过程理解:似乎整体优化过程没有体现源数据: T \mathrm{T} T 和蒸馏数据: S \mathrm{S} S 两者之间是如何进行优化的,第二个过程直接通过 蒸馏数据去优化梯度,第一个过程则是借助第 T T T步得到的参数去计算蒸馏数据集之间差异(这个过程可以理解为模型参数是固定的,但是数据是变化的,需要的是一个数据集在通过源数据集上也有较好的表现)

2、Parameter Matching

分别使用合成数据集和原始数据集对同一个网络进行若干步训练,并促使它们训练得到的神经网络参数保持一致。根据使用合成数据集(S)和原始数据集(T)进行训练的步数,参数匹配方法可以进一步分为两类:单步参数匹配和多步参数匹配。

Parameter Matching

左图为单参数匹配,右图为多参数匹配

  • 1、单参数匹配

L ( S , T ) = E θ ( 0 ) ∼ Θ [ ∑ t = 0 T D ( S , T ; θ ( t ) ) ] θ ( t ) = θ ( t − 1 ) − η ∇ l ( S ; θ ( t − 1 ) ) \begin{aligned} \mathcal{L}(S, T) &= \mathbb{E}_{\theta^{(0)} \sim \Theta} \left[ \sum_{t=0}^{T} \mathcal{D}(S, T; \theta^{(t)}) \right] \\ \theta^{(t)} &= \theta^{(t-1)} - \eta \nabla l(S; \theta^{(t-1)}) \end{aligned} L(S,T)θ(t)=Eθ(0)Θ[t=0TD(S,T;θ(t))]=θ(t1)ηl(S;θ(t1))

其中 D \mathrm{D} D代表两部分梯度之间的距离

D ( S , T ; θ ) = ∑ c = 0 C − 1 d ( ∇ l ( S c ; θ ) , ∇ l ( T c ; θ ) ) , d ( A , B ) = ∑ i = 1 L ∑ j = 1 J i ( 1 − A j ( i ) ⋅ B j ( i ) ∥ A j ( i ) ∥ ∥ B j ( i ) ∥ ) , \begin{aligned} \mathcal{D}(S, T; \theta) &= \sum_{c=0}^{C-1} d(\nabla l(S_c; \theta), \nabla l(T_c; \theta)), \\ d(A, B) &= \sum_{i=1}^{L} \sum_{j=1}^{J_i} \left(1 - \frac{\mathbf{A}_j^{(i)} \cdot \mathbf{B}_j^{(i)}}{\|\mathbf{A}_j^{(i)}\| \|\mathbf{B}_j^{(i)}\|}\right), \end{aligned} D(S,T;θ)d(A,B)=c=0C1d(l(Sc;θ),l(Tc;θ)),=i=1Lj=1Ji(1Aj(i)∥∥Bj(i)Aj(i)Bj(i)),

  • 2、多参数匹配

https://georgecazenavette.github.io/mtt-distillation/

对于单步参数匹配,由于只匹配单步梯度,因此在评估中可能会积累误差,而模型是通过多步合成数据更新的

L ( S , T ) = E θ ( 0 ) ∼ Θ [ D ( θ S ( T s ) , θ T ( T t ) ) ] θ S ( t ) = θ S ( t − 1 ) − η ∇ l ( S ; θ S ( t − 1 ) ) θ T ( t ) = θ T ( t − 1 ) − η ∇ l ( T ; θ T ( t − 1 ) ) D ( θ S ( T s ) , θ T ( T t ) ) = ∥ θ S ( T s ) − θ T ( T t ) ∥ 2 ∥ θ T ( T t ) − θ ( 0 ) ∥ 2 \begin{aligned} \mathcal{L}(S, T) &= \mathbb{E}_{\theta^{(0)} \sim \Theta} \left[ \mathcal{D}(\theta_S^{(T_s)}, \theta_T^{(T_t)}) \right] \\ \theta_S^{(t)} &= \theta_S^{(t-1)} - \eta \nabla l(S; \theta_S^{(t-1)}) \\ \theta_T^{(t)} &= \theta_T^{(t-1)} - \eta \nabla l(T; \theta_T^{(t-1)}) \\ \mathcal{D}(\theta_S^{(T_s)}, \theta_T^{(T_t)}) &= \frac{\|\theta_S^{(T_s)} - \theta_T^{(T_t)}\|^2}{\|\theta_T^{(T_t)} - \theta^{(0)}\|^2} \end{aligned} L(S,T)θS(t)θT(t)D(θS(Ts),θT(Tt))=Eθ(0)Θ[D(θS(Ts),θT(Tt))]=θS(t1)ηl(S;θS(t1))=θT(t1)ηl(T;θT(t1))=θT(Tt)θ(0)2θS(Ts)θT(Tt)2

多步参数则是直接对数据S和T参数进行多步更新,优化目标为两部分数据所得到的参数 θ S \theta_S θS 以及 θ T \theta_ T θT

对比 多参数匹配单参数匹配Performance Matching三者之间差异:
1、单参数匹配Performance Matching之间差异:从公式上很好理解,单参数匹配中在计算 L \mathcal{L} L过程中同时还需要使用 源数据蒸馏数据,由于只需要单步梯度,并且合成数据和网络的更新是解耦的,因此与基于元学习的性能匹配方法相比,这种方法更节省内存
2、单参数匹配多参数匹配之间差异:多参数匹配梯度分别通过源数据和蒸馏数据两部分进行更新得到,然后再去计算两部分参数梯度之间的差异更新蒸馏数据

  • 3、分布式匹配

(CVPR-25)上海交大论文

参考

1、Dataset Distillation: A Comprehensive Review
2、A Comprehensive Survey of Dataset Distillation
3、(CVPR-2025)Dataset Distillation with Neural Characteristic Function: A Minmax Perspective
4、(CVPR-2024)On the Diversity and Realism of Distilled Dataset: An Efficient Perspective
5、(CVPR-2023)Accelerating Dataset Distillation via Model Augmentation

<think>好的,我需要回答用户关于数据蒸馏的问题,包括概念和实现方法,同时结合机器学习和深度学习。首先,我要确保自己正确理解数据蒸馏的定义,然后查找相关的实现方法和技术。 首先,数据蒸馏Data Distillation)通常指的是从大规模数据集中提取关键信息,生成一个更小但保持原数据集有效性的子集,或者生成合成数据来替代原始数据。这有助于降低计算成本,同时保持模型性能。需要区分知识蒸馏(Knowledge Distillation),后者是模型压缩技术,将大模型的知识迁移到小模型,而数据蒸馏更侧重于数据层面的压缩或优化。 接下来,我需要确认数据蒸馏的主要方法。根据记忆,常见的方法包括数据集剪枝(Data Pruning)、核心集选择(Coreset Selection)、数据增强生成(如使用生成模型创建合成数据)、以及基于梯度匹配的方法(如Dataset Condensation)。例如,Dataset Condensation通过优化合成数据,使得在合成数据上训练的模型接近在原始数据上训练的效果。 然后,实现方法部分需要具体说明步骤。例如,Dataset Condensation的实现可能涉及定义损失函数,计算原始模型和合成数据模型之间的梯度差异,使用优化算法(如SGD)迭代更新合成数据。另外,可能需要使用深度学习框架如PyTorch或TensorFlow来实现梯度计算和优化过程。 同时,需要引用相关的资料。用户提供的引用中,引用[1]提到数据对模型性能的重要性,这与数据蒸馏减少数据量但仍需保持有效性相关。引用[4]提到模型加速方法,数据蒸馏可以视为数据层面的加速方法。这些可以作为支持数据蒸馏必要性的依据。 需要注意区分数据蒸馏和知识蒸馏,避免混淆。在回答中明确两者的不同,确保用户不会误解概念。 最后,生成相关问题,可能涉及数据蒸馏的应用场景、与知识蒸馏的区别、具体算法比较等。 现在需要组织这些思路,用中文清晰表达,并遵循用户的格式要求:行内公式用$...$,独立公式用$$...$$,正确使用LaTeX语法,添加引用标识,并在末尾生成相关问题。</think>### 数据蒸馏的概念与实现方法 **数据蒸馏**(Data Distillation)是一种从大规模数据集中提取关键信息的技术,旨在生成更小但高效的替代数据集或合成数据,从而降低计算成本,同时保持模型性能[^1]。它与**知识蒸馏**(Knowledge Distillation)不同,后者侧重于模型压缩(将大模型的知识迁移到小模型),而数据蒸馏聚焦于数据层面的优化。 --- #### 数据蒸馏的核心方法 1. **数据集剪枝(Data Pruning)** 通过评估数据样本的重要性,剔除冗余或低价值的样本。例如,基于训练损失的样本筛选:损失较小的样本可能对模型训练贡献较低,可优先剪枝。 2. **核心集选择(Coreset Selection)** 使用数学方法(如几何覆盖或聚类)从原始数据中选择代表性样本。例如,通过$k$-中心算法选择覆盖数据分布的核心子集。 3. **合成数据生成** 利用生成模型(如GAN或扩散模型)创建与原始数据分布相似的合成数据。例如,训练生成器$G_\theta$,使其输出$G_\theta(z)$逼近真实数据分布$p_{\text{data}}(x)$。 4. **基于梯度匹配的方法(如Dataset Condensation)** 通过优化合成数据,使得在合成数据上训练的模型参数梯度与原始数据训练的梯度一致。目标函数可表示为: $$ \min_{S} \mathbb{E}_{\theta} \left[ \| \nabla_\theta \mathcal{L}(D, \theta) - \nabla_\theta \mathcal{L}(S, \theta) \|^2 \right] $$ 其中$S$为合成数据集,$D$为原始数据集[^4]。 --- #### 实现步骤(以Dataset Condensation为例) 1. **初始化合成数据**:随机生成少量合成样本$S = \{s_1, s_2, ..., s_m\}$,通常$m \ll |D|$。 2. **定义梯度损失**:在多个随机初始化的模型参数$\theta$上,计算原始数据与合成数据的参数梯度差异。 3. **优化合成数据**:通过反向传播更新合成数据$S$,使用优化器(如SGD)最小化梯度差异。 4. **迭代训练**:重复步骤2-3直至收敛,最终得到高信息密度的合成数据集。 ```python import torch def dataset_condensation(original_data, synthetic_size, lr=0.1, iterations=1000): synthetic_data = torch.randn(synthetic_size, requires_grad=True) optimizer = torch.optim.SGD([synthetic_data], lr=lr) for _ in range(iterations): loss = 0 for _ in range(10): # 多组随机初始化的模型参数 theta = torch.randn(10) # 假设模型参数维度为10 grad_real = torch.autograd.grad(loss_fn(original_data, theta), theta)[0] grad_syn = torch.autograd.grad(loss_fn(synthetic_data, theta), theta)[0] loss += torch.norm(grad_real - grad_syn, p=2) optimizer.zero_grad() loss.backward() optimizer.step() return synthetic_data ``` --- #### 应用场景 - **资源受限环境**:在边缘设备或低算力场景下,使用合成数据替代大规模原始数据。 - **隐私保护**:生成不含敏感信息的合成数据,避免直接使用真实数据[^1]。 - **加速实验迭代**:在小数据集上快速验证模型结构或超参数。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Big-Yellow-J

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值