图解深度学习 - 数据蒸馏和知识蒸馏

**深度学习模型就像是处理数据的筛子,包含一系列越来越精细的数据过滤器(也就是层)。******每一层都致力于从数据中捕捉有用的信息,并将这些信息传递给下一层,以便进一步的处理和表示。****它通过一系列层层相连的数据过滤器(即层layer),逐步对输入数据进行处理和精炼,********从而实现渐进式的数据蒸馏(Data Distillation)。

数据蒸馏通常关注于数据的处理和优化**,旨在从原始数据集中提取出更具代表性和有用性的数据子集;知识蒸馏则是一种模型压缩和知识迁移的方法,旨在将大型教师模型中的知识转移到小型学生模型中。**

一、数据蒸馏

********数据蒸馏(Data Distillation)是什么?****数据蒸馏通常关注于数据的处理和优化,旨在从原始数据集中提取出更具代表性和有用性的数据子集。

  1. 原始数据集:包含大量的、可能包含冗余和噪声的数据。

  2. 数据预处理:对原始数据进行清洗、去噪等处理,以提高数据质量。

  3. 特征提取:从数据中提取出关键特征,这些特征能够反映数据的本质属性。

  4. 数据降维:通过减少数据的维度,去除冗余信息,得到更为简洁的数据集。

  5. 精炼数据集:经过上述步骤处理后的数据集,具有更高的质量和代表。

在深度学习中,数据蒸馏通常是通过逐层过滤和提取特征来实现的。每一层都会对数据进行一定的变换和处理,使其更加接近最终的目标表示。

“一图 + 一句话”彻底搞懂数据蒸馏。

数据蒸馏是一个数据处理与优化技术,它旨在从包含大量可能冗余和噪声的原始数据集中,通过一系列步骤如数据预处理、特征提取、数据降维等,提炼出一个高质量、低冗余且高度代表性的精炼数据集

二、知识蒸馏

知识蒸馏(Knowledge Distillation)是什么?知识蒸馏则是一种模型压缩和知识迁移的方法,旨在将大型教师模型中的知识转移到小型学生模型中**************。**********

  1. 教师模型(已训练):一个高精度、但可能较为复杂的大型模型。

  2. 提取知识:从教师模型的输出(如概率分布、中间特征等)中提取出有用的知识。

  3. 学生模型(待训练):一个轻量化、但性能可能较低的小型模型。

  4. 蒸馏训练:利用教师模型提取出的知识,作为学生模型的训练目标进行训练。

  5. 精炼学生模型:经过蒸馏训练后的学生模型,能够学习到教师模型的泛化能力,从而达到或接近教师模型的性能。

知识蒸馏从多个已经训练好的大型模型中,将知识转移给一个轻量级的模型。它主要关注于模型之间的知识传递**********,通过利用教师模型的输出(如概率分布或中间特征)作为软目标,来指导学生模型的训练。**********

“一图 + 一句话”彻底搞懂知识蒸馏。

知识蒸馏是一种模型压缩技术,旨在将大型、高精度教师模型中的关键知识提炼并传递给轻量化学生模型。通过这一过程,学生模型能在保持低计算成本的同时,学习到教师模型的泛化能力,实现性能的大幅提升,接近教师模型的性能水平。********

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值