如何将dataframe的两列分别作为行、列的索引

本文介绍了如何在Python的Pandas库中,将DataFrame的两列数据分别作为行和列的索引。作者在处理股票信息时遇到此问题,通过去重和排序操作,将股票代码和交易日期转换为新的DataFrame的行和列索引,并展示了实现过程。最后,文章提及使用itertuples()方法遍历和构建新DataFrame,但寻求更高效的方法。

这个是我在intern的时候遇到的问题。处理股票信息的时候,最终需要输出一个列代表交易日期,行代表股票代码,数值为对应因子评估值的矩阵。
而原本的dataframe的由从数据库导出的信息生成的。因此对应dataframe的column是一些指标,例如股票代码,股票交易日,收盘价格等等。由于也是刚刚上手pandas一周,对应dataframe不是很熟悉,在网上搜索了一圈也没得到想要的答案,于是就自己写了一个。


原本的dataframe结构是这样的:
原本的dataframe


下面是具体的代码:

res_col = []
res_col.extend(data.stock_name.unique().tolist())</
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值