yolov8:pt 转 onnx

yolov8官方教程

1.安装包


我使用的是虚拟环境,yolov8包已经下载到本地了,因此直接在anaconda prompt 命令行继续安装

  首先激活自己的虚拟环境,然后执行安装命令

pip install ultralytics
  • yolov8中没有requirement.txt文件,直接安装 ultralytics 即可

2.进行模型转换

将转换好的pt文件放在weight文件夹下,然后在这个文件夹创建一个py文件,里面使用如下代码进行转换:

from ultralytics import YOLO

model = YOLO("best.pt")
model.export(format = "onnx")  # export the model to onnx format

### 将PyTorch模型换为ONNX格式 将PyTorch模型换为ONNX格式的过程可以通过`torch.onnx.export()`函数实现。以下是详细的说明和代码示例: #### 换过程概述 为了完成这一任务,需要定义以下几个要素: 1. **模型实例化**:加载已训练好的PyTorch模型。 2. **输入张量**:创建一个模拟输入张量用于导出。 3. **指定输入和输出节点名称**:这些名称将在ONNX图中作为标记使用。 4. **调用`torch.onnx.export()`方法**:执行实际的换操作。 具体步骤如下所示[^3]: ```python import torch from torchvision import models # 定义ResNet18模型并加载预训练权重 model = models.resnet18(pretrained=True) # 设置模型为评估模式(非常重要) model.eval() # 创建一个随机输入张量 (batch_size=1, channels=3, height=224, width=224) dummy_input = torch.randn(1, 3, 224, 224) # 指定输入和输出节点名称 input_names = ["input_0"] output_names = ["output_0"] # 导出模型到ONNX格式 torch.onnx.export( model, dummy_input, "resnet18.onnx", input_names=input_names, output_names=output_names ) ``` 上述代码片段展示了如何将一个标准的ResNet18模型换成ONNX格式,并保存为文件名`resnet18.onnx`。注意,在运行此脚本之前,请确保安装了必要的依赖库,例如`torchvision`。 #### 验证换后的模型 一旦完成了模型换,建议验证其功能是否正常工作。这通常涉及比较原始PyTorch模型与新生成的ONNX模型之间的推理结果一致性[^2]。下面是一个简单的测试例子: ```python import onnxruntime as ort import numpy as np # 使用相同的虚拟输入数据进行预测 ort_session = ort.InferenceSession("resnet18.onnx") outputs = ort_session.run(None, {"input_0": dummy_input.numpy()}) print(outputs[0].shape) # 输出形状应匹配原模型的结果 ``` 通过这种方式可以确认两者之间是否存在显著差异。 #### 注意事项 - 如果计划部署至特定硬件平台,则可能还需要进一步优化所得到的ONNX文件以适应目标环境需求[^1]。 - 对于某些复杂网络结构来说,可能会遇到不支持的操作算子等问题;此时需查阅官方文档了解最新进展或者寻找替代方案解决这些问题[^4]。 --- ###
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值