矩阵的基本运算
幂等矩阵:若矩阵有,则称为幂等矩阵。
对合矩阵:若矩阵有,则称为对合矩阵。
内积:两个矩阵之间的内积是与矩阵乘积密切相关的运算。
矩阵A和B的内积记作
矩阵的指数:
矩阵的对数:
矩阵的导数:如果矩阵A的元素都是参数t的函数,则矩阵的导数定义为:
矩阵的积分:
矩阵的指数函数:
矩阵的指数函数的导数:
矩阵乘积的导数:其中A,B都为变量t的矩阵函数。
向量的线性无关性与线性相关性
m*n的线性方程组可以写为Ax=b的形式,若记,则方程可以简化为:
称为列向量的线性组合。
若方程仅有零解。则该组向量线性无关。
若存在一组不全为零的系数使得上述方程成立,则该组向量线性相关。
向量的非奇异矩阵
若有一个n*n的矩阵A,当且仅当矩阵方程Ax=0只有零解x=0时,则该矩阵为非奇异的。若A不是非奇异的,则称A奇异。
若n*n的矩阵A是非奇异的,当且仅当它的n个列向量线性无关。
初等行变换与阶梯型矩阵
初等行变换:
令m*n的矩阵A的m个行向量分别为。下列运算称为矩阵A的初等行运算或初等行变换:
(1)互换矩阵的任意两行。
(2)一行元素同时乘以一个非零常数。
(3)将第p行的元素同时乘以一个非零常数并加给第q行。
阶梯型矩阵:
若一个m*n的矩阵满足
(1)全部由零组成的所有行都位于矩阵的底部。
(2)每一个非零行的首项元素总是出现在上一个非零行的首项元素的右边。
(3)首项元素下面的同列元素全部为零。
简约阶梯型:
若一个阶梯型矩阵的每一非零行的首项元素都等于1,并且每一个为1的首项元素都是它所在列的唯一的非零元素,则这个矩阵为简约阶梯型矩阵。
如: