新手Pytorch入门笔记-transforms.Compose()

本文介绍了如何在PyTorch中使用transforms.Compose进行图像预处理,包括调整尺寸、转换为张量并进行标准化,以准备模型输入。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
我使用的图片是上图,直接下载即可
transforms.Compose 是PyTorch中的一个实用工具,用于创建一个包含多个数据变换操作的变换对象。这些变换操作通常用于数据预处理,例如图像数据的缩放、裁剪、旋转等。使用transforms.Compose 可以将多个数据变换组合在一起,以便将它们应用于数据。

在这个示例中,transforms.Compose被用于调整图像大小并将图像转换为张量,然后我们单独对张量执行了 unsqueeze(0) 操作以添加批次维度。这种分开执行的方式更清晰,并且通常更容易维护和理解。


from PIL import Image
from torchvision import transforms
import torch
from  torchvision.io import read_image
input_path = 
transforms.GaussianBlur是torchvision库中的一个预定义的图像变换方法。它用于对图像进行高斯模糊处理,可以通过指定模糊核的大小和标准差来调节模糊程度。在提供的代码中,transform2通过transforms.Compose将自定义的AddBlur方法包装成一个预处理方法,然后使用transforms.RandomApply将其以一定的概率应用于输入图像。因此,当你需要使用transforms.GaussianBlur进行图像预处理时,可以根据需要选择合适的参数进行调用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [torchvision.transforms:同时使用RandomApply、RandomChoice,官方预处理方法、自定义预处理方法](https://blog.csdn.net/qq_40682833/article/details/127740496)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [『PyTorch』学习笔记 1 —— transforms](https://blog.csdn.net/libo1004/article/details/116673227)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hwg985

祝老板生意兴隆,财源广进

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值