什么是先验?(CVPR25)Detail-Preserving Latent Diffusion for Stable Shadow Removal论文阅读

先验(Prior)是什么?

在概率统计与机器学习(尤其是贝叶斯方法)中,“先验”通常指 先验分布(prior distribution) —— 在 看到数据之前,我们对某个随机变量(参数、潜变量、预测结果等)所持有的信念或假设,用概率分布来刻画。


1. 先验的数学定义

  • 设随机变量 θ \theta θ 表示模型参数,观测数据为 X X X
  • 先验分布 p ( θ ) p(\theta) p(θ):在未观测 X X X 时,对 θ \theta θ 的不确定性描述。
  • 似然 p ( X ∣ θ ) p(X \mid \theta) p(Xθ):给定参数 θ \theta θ,数据 X X X 出现的概率模型。
  • 后验分布 p ( θ ∣ X ) p(\theta \mid X) p(θX):观测了数据后,对 θ \theta θ 的更新信念
    p ( θ ∣ X ) ∝ p ( X ∣ θ )   p ( θ ) p(\theta \mid X) \propto p(X \mid \theta)\,p(\theta) p(θX)p(Xθ)p(θ)
    这里的 p ( θ ) p(\theta) p(θ) 就是先验,在贝叶斯推断中提供了“正则化”与“注入知识”的作用。

2. 先验在深度生成模型中的角色

场景先验对象作用与示例
变分自编码器(VAE)潜变量 z \mathbf{z} z常用各向同性高斯先验 p ( z ) = N ( 0 , I ) p(\mathbf{z})=\mathcal{N}(\mathbf{0},\mathbf I) p(z)=N(0,I) 作为“数据生成的隐空间假设”,并在变分下界里提供 KL 正则项,鼓励编码器输出的 q ϕ ( z ∣ x ) q_\phi(\mathbf z\mid\mathbf x) qϕ(zx) 不要偏离先验。citeturn0file0
Stable Diffusion / Latent Diffusion视觉先验“先验”不仅仅是数学分布,还可以是 预训练模型中蕴含的大规模视觉知识。论文中称 “rich visual priors of a pre‑trained Stable Diffusion (SD) model”,意指 SD 在数十亿图像上学到的纹理、语义、光照等经验,可迁移到阴影去除等下游任务。citeturn1file0
正则化 / 数据增广参数或输出L2 正则相当于对参数置高斯先验;Dropout 可视作对网络激活引入先验随机性,防止过拟合。

3. 为什么需要先验?

  1. 注入先验知识

    • 在样本稀缺或噪声大时,用物理、几何、统计经验来约束模型。
    • 例如图像去噪中假设自然图像梯度服从稀疏分布,可构造 Laplace 先验。
  2. 正则化

    • 先验相当于在目标函数中加入惩罚项,避免过拟合;VAE 的 KL 散度就是典型例子。
  3. 可解释性

    • 先验让模型推断的每一步都有概率语义,易于解释和不确定性评估。
  4. 迁移与泛化

    • 预训练模型蕴含的“隐式先验”可迁移到新任务,提高少样本表现,如 Stable Diffusion 的视觉先验。

4. 先验的常见类型

类型描述应用示例
共轭先验与似然函数同族,推导后验闭式解方便,如伯努利‑Beta、正态‑正态。朴素贝叶斯、线性回归(正态‑正态)。
非信息先验(平坦/Jeffreys)表达“无偏好”或参数化不变性。极少数据或想弱化先验影响时使用。
稀疏先验鼓励稀疏解,常用 Laplace(L1)或Spike‑and‑Slab。词袋模型、Lasso、图像梯度稀疏。
结构先验显式编码物理/几何结构。NeRF 中的体渲染先验;光照一致性先验。
隐式先验隐藏在生成网络(GAN, Diffusion)参数中的大规模统计。Stable Diffusion、StyleGAN 的视觉先验。

5. 如何选择或构造先验?

  1. 领域知识:利用物理定律(能量守恒)、几何约束(相机模型)等。
  2. 数学便利:选择共轭族简化推导。
  3. 数据驱动:预训练大型模型提取隐式先验,再微调。
  4. 经验与实验:尝试不同先验,比较后验性能与泛化。

6. 小结

  • 先验分布是贝叶斯统计的起点,体现我们对未知量的事前信念。
  • 在现代深度学习中,先验既可以是 显式的概率分布(如 VAE 中的高斯),也可以是 隐式的模型知识(如 Stable Diffusion 的视觉先验)。
  • 选取恰当的先验能够 正则化模型、融合领域知识、提高泛化与可靠性

希望这样的详细解释能帮助你全面理解“先验”这一概念。如需进一步探讨如何在具体项目中设计先验,欢迎继续交流!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hwg985

祝老板生意兴隆,财源广进

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值