日期:2020.10.31
主题:PyTorch入门
内容:
-
根据PyTorch官方教程文档,学习PyTorch中的训练分类器。
-
根据自己的理解和试验,为代码添加少量注解。
具体代码如下 ↓
from __future__ import print_function
import torch
"""
{训练分类器}
"""
"""
【数据处理】
对于图片,有Pillow,OpenCV等包可以使用;
对于音频,有scipy和librosa等包可以使用;
对于文本,不管是原生python的或者是基于Cython的文本,可以使用NLTK和SpaCy;
特别对于视觉方面,有torchvision包,
其包含了针对Imagenet、CIFAR10、MNIST等常用数据集的数据加载器(data loaders),
还有对图像数据转换的操作,即torchvision.datasets和torch.utils.data.DataLoader。
CIFAR10数据集
有如下的分类:“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”等。
图片数据大小是3x32x32,即:三通道彩色图像,图像大小是32x32像素。
"""
"""
【训练一个图片分类器】
步骤:
1.通过torchvision加载CIFAR10里面的训练和测试数据集,并对数据进行标准化
2.定义卷积神经网络
3.定义损失函数
4.利用训练数据训练网络
5.利用测试数据测试网络
"""
"""
1.加载并标准化CIFAR10
"""
# 使用torchvision加载CIFAR10
import torchvision
import torchvision.transforms as transforms
# torchvision数据集加载完后的输出是范围在[0, 1]之间的PILImage。
# 将其标准化为范围在[-1, 1]之间的张量。
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4, shuffle=False, num_workers=2)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 可视化部分训练数据
import matplotlib.pyplot as plt
import numpy as np
# 输出图像的函数
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
plt.imshow(np.transpose(npimg, (1, 2, 0)))
plt.show()
"""
# 随机获取训练图片
dataiter = iter(trainloader)
images, labels = dataiter.next()
# 显示图片
imshow(torchvision.utils.make_grid(images))
# 打印图片标签
print(' '.join('%5s' % classes[labels[j]] for j in range(4)))
"""
"""
2.定义一个卷积神经网络
"""
import torch.nn as nn
import torch.nn.functional as F
# 将之前神经网络章节定义的神经网络拿过来,并将其修改成输入为3通道图像(替代原来定义的单通道图像)。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5) # 二维卷积
self.pool = nn.MaxPool2d(2, 2) # 池化操作
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120) # 线性变换
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x)) # 非线性激励函数
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
"""
3.定义损失函数和优化器
"""
import torch.optim as optim
# 使用多分类的交叉熵损失函数和随机梯度下降优化器(使用momentum)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
"""
<在GPU上训练>
与将一个张量传递给GPU一样,可以这样将神经网络转移到GPU上。
"""
# 首先定义第一个设备为可见cuda设备
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Assuming that we are on a CUDA machine, this should print a CUDA device:
print(device)
# 然后这些方法将递归遍历所有模块,并将它们的参数和缓冲区转换为CUDA张量
net.to(device)
# 请记住,我们不得不将输入和目标在每一步都送入GPU
# inputs, labels = inputs.to(device), labels.to(device)
"""
4.训练网络
"""
# 只需要遍历数据迭代器,并将输入“喂”给网络和优化函数。
for epoch in range(2): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs
inputs, labels = data
inputs, labels = inputs.to(device), labels.to(device) # 将输入和目标送入GPU
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# 保存已训练得到的模型
PATH = './cifar_net.pth'
torch.save(net.state_dict(), PATH)
"""
5.使用测试数据测试网络
我们已经在训练集上训练了2遍网络。但是我们需要检查网络是否学到了一些东西。
将通过预测神经网络输出的标签来检查这个问题,并和正确样本进行(ground-truth)对比。
如果预测是正确的,我们将样本添加到正确预测的列表中。
"""
# 展示测试集中的图像
dataiter = iter(testloader)
images, labels = dataiter.next()
# 输出图片
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))
# 下一步,让我们加载保存的模型(注意:在这里保存和加载模型不是必要的,只是为了解释如何去做这件事)
net = Net()
net.load_state_dict(torch.load(PATH))
# 让我们看看神经网络得出的结论
outputs = net(images)
# 输出是10个类别的量值。一个类的值越高,网络就越认为这个图像属于这个特定的类。
# 让我们得到最高量值的下标/索引;
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]] for j in range(4)))
# 让我们看看网络在整个数据集上表现
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
# 那么哪些是表现好的类呢?哪些是表现的差的类呢?
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))