问题描述
在做一个关于时间序列数据的深度学习模型,用GRU算法,报错: ValueError: Input 0 of layer sequential is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 72)。
原因
最后发现是输入X的样本集的数据维度不对。tensorflow的深度学习模型需要输入的是三维数据集。维度描述为:【送入样本数,循环核时间展开步数,每个时间步输入特征个数】。
而我之前因为用的是sklearn的机器学习库,所以数据集准备的都是二维的。
当然就报错辣。
解决方案
按照深度学习模型重新把X reshape一下就好了。