解决tensorflow/keras报错:ValueError: Input 0 of layer sequential is incompatible with the layer

文章讲述了在使用GRU算法处理时间序列数据时,遇到的ValueError,原因是TensorFlow模型期望三维输入,而作者之前使用sklearn库得到的是二维数据。解决方法是将二维数据调整为三维数据结构,通过reshape操作实现。
摘要由CSDN通过智能技术生成

问题描述

在做一个关于时间序列数据的深度学习模型,用GRU算法,报错: ValueError: Input 0 of layer sequential is incompatible with the layer: expected ndim=3, found ndim=2. Full shape received: (None, 72)。

原因

最后发现是输入X的样本集的数据维度不对。tensorflow的深度学习模型需要输入的是三维数据集。维度描述为:【送入样本数,循环核时间展开步数,每个时间步输入特征个数】。
而我之前因为用的是sklearn的机器学习库,所以数据集准备的都是二维的。
当然就报错辣。

解决方案

按照深度学习模型重新把X reshape一下就好了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值