【微电网_储能】基于启发式状态机策略和线性程序策略优化方法的微电网中的储能研究【给定系统约束和定价的情况下】(Matlab代码实现)

文章探讨了能源管理系统在微电网中的应用,通过预测定价和负荷条件优化电池储能系统。对比了启发式状态机策略与基于线性编程的优化方法,展示了在降低电力成本方面的效果。提供的Matlab代码示例用于实现这一优化过程。
摘要由CSDN通过智能技术生成

 👨‍🎓个人主页:研学社的博客 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

能源管理系统(EMS)有助于优化微电网中分布式能源(DER)的使用,特别是在涉及可变定价和发电时。本文使用预测定价和负荷条件来优化存储/销售来自电网规模电池系统的能量。演示了两种方法:启发式状态机策略和基于线性程序的优化方法

 

📚2 运行结果

for i = 1:numSim
    if i <= numOffset*numel(pvDataSet)
        heuristicCost(end+1) = out(i).logsout{1}.Values.Data(end);
    else
        optCost(end+1)= out(i).logsout{1}.Values.Data(end);
    end
end
histogram(heuristicCost); hold on;
histogram(optCost);
legend('Heuristic','Optimization');
xlabel('Cost per Day ($)'); hold off;

 部分代码:

function [Pgrid,Pbatt,Ebatt] = battSolarOptimize(N,dt,Ppv,Pload,Einit,Cost,FinalWeight,batteryMinMax)

% Minimize the cost of power from the grid while meeting load with power 
% from PV, battery and grid 

prob = optimproblem;

% Decision variables
PgridV = optimvar('PgridV',N);
PbattV = optimvar('PbattV',N,'LowerBound',batteryMinMax.Pmin,'UpperBound',batteryMinMax.Pmax);
EbattV = optimvar('EbattV',N,'LowerBound',batteryMinMax.Emin,'UpperBound',batteryMinMax.Emax);

% Minimize cost of electricity from the grid
prob.ObjectiveSense = 'minimize';
prob.Objective = dt*Cost'*PgridV - FinalWeight*EbattV(N);

% Power input/output to battery
prob.Constraints.energyBalance = optimconstr(N);
prob.Constraints.energyBalance(1) = EbattV(1) == Einit;
prob.Constraints.energyBalance(2:N) = EbattV(2:N) == EbattV(1:N-1) - PbattV(1:N-1)*dt;

% Satisfy power load with power from PV, grid and battery
prob.Constraints.loadBalance = Ppv + PgridV + PbattV == Pload;

% Solve the linear program
options = optimoptions(prob.optimoptions,'Display','none');
[values,~,exitflag] = solve(prob,'Options',options);

% Parse optmization results
if exitflag <= 0
    Pgrid = zeros(N,1);
    Pbatt = zeros(N,1);
    Ebatt = zeros(N,1);
else
    Pgrid = values.PgridV;
    Pbatt = values.PbattV;
    Ebatt = values.EbattV;
end

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]Jonathan LeSage (2023). Microgrid Energy Management System (EMS) using Optimization.

🌈4 Matlab代码实现

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值