高光谱端元提取算法利用凸几何和K均值(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文献


💥1 概述

摘要
高光谱端元提取算法利用凸几何和K均值。高光谱分离是一种近似计算高光谱数据中所有像素的纯净类型的光谱特征及其相应的组合比例的技术。高光谱分离对于理解、研究和可视化高光谱图像是一项重要任务。在这个任务中,提取纯净的光谱特征是非常具有挑战性的。本文提出了一种新颖的方法,利用凸几何和K均值的概念进行端元提取。现有的大多数端元提取技术仅使用凸几何。利用K均值与凸几何相结合可以提高提取过程的准确性。提出的算法通过使用模拟和真实世界数据集与其他最先进的算法进行比较。根据模拟结果,可以看出提出的算法优于其他最先进的算法。

关键词 凸几何 协方差 端元提取 高光谱图像 K均值
高光谱遥感与从地面上的物质或景观中提取数据有关,基于从航空或航天传感器捕获的辐射值。在遥感技术中,高光谱传感器是一种出色的传感器,它可以获取可见光、短波红外和中波红外的图像。高光谱传感器的主要优势在于它以非常高的光谱分辨率捕获图像,有助于识别许多对象的细微细节。由于这个优势,高光谱传感器被用于许多应用[5, 12, 15],如农业、水资源、植被和城市。然而,高光谱传感器也带来了许多挑战[5, 15, 17]。高光谱传感器的主要局限性在于其低空间分辨率。

📚2 运行结果

部分代码:

function [img] = hyperConvert3d(img, h, w, numBands)
% HYPERCONVERT2D Converts an 2D matrix to a 3D data cube
% Converts a 2D matrix (p x N) to a 3D data cube (m x n x p)
% where N = m * n

% Usage
%   [M] = hyperConvert3d(M)
% Inputs
%   M - 2D data matrix (p x N)
% Outputs
%   M - 3D data cube (m x n x p)


if (ndims(img) ~= 2)
    error('Input image must be p x N.');
end

[numBands, N] = size(img);

if (1 == N)
    img = reshape(img, h, w);
else
    img = reshape(img.', h, w, numBands); 
end

return;

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

🌈4 Matlab代码、数据、文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值