M-ASK调制的误码率,获得M=2、4、8、16时的M-ASK调制的误码率,并比较模拟和分析结果(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

M-ASK(Amplitude Shift Keying)调制是一种数字调制技术,其中载波的振幅被调制以表示数字数据。误码率是衡量数字通信系统性能的重要指标,它表示接收端错误解码的比例。

M-ASK调制的误码率通常可以通过理论分析和数字仿真来研究。理论分析可以使用概率论和统计学的方法来推导误码率的表达式,而数字仿真则可以通过模拟通信系统的传输过程来获取实际的误码率性能。

对于M-ASK调制,误码率的表达式通常会受到噪声、调制深度、符号间干扰等因素的影响。在实际研究中,可以针对不同的M值(2、4、8、16等)进行误码率性能的分析,以比较不同调制方案的性能差异。

综上,研究M-ASK调制的误码率需要深入理解数字通信系统的原理和性能评估方法,结合理论分析和数字仿真来获取准确的误码率性能数据。

📚2 运行结果

部分代码:

M = 2;         % Number of Symbols
k = log2(M);    % Number of bits per Symbol
alphabet = [-(M-1) : 2 : (M-1)];
Eavg = (1/M)*(sum(alphabet.^2));  % average power of transmitted signal
Eb_N0_dB = SNR;                   % signal to noise ratio
Eb_N0 = 10.^(Eb_N0_dB/10);
Es_N0 = Eb_N0*k;                  % symbols energy to noise ratio

% M-ASK transmitted signal
St = randsrc(1,N,alphabet);
St_norm = St/sqrt(Eavg);                % Normalization of transmitted signal power to one

% Channel Model and received signal
sigma2 = 1./(Es_N0);                % because signal energy is normalized to 1
N0 = sigma2;

for i = 1:length(SNR)
    n = sqrt(sigma2(i)/2)*(randn(1,length(St))+j*randn(1,length(St)));
    Sr_norm(i,:) = St_norm + n;
end
% Optimum Receiver Structure /or Decision regions comparison
% Decision Structure
Sr = Sr_norm*sqrt(Eavg);               % deNormalization of received signal
DM = [-(M-2):2:(M-2)];                 % Decision Margins
for i = 1:length(SNR)
    So_I(find(real(Sr(i,:)) < DM(1)))           = alphabet(1);
    if (length(DM) > 1)
        for k = 2:length(DM)
            So_I(find((real(Sr(i,:)) >  DM(k-1))&(real(Sr(i,:)) < DM(k))))  = alphabet(k);
        end
    end
    So_I(find(real(Sr(i,:)) > DM(length(DM))))  = alphabet(length(alphabet));
    So(i,:) = So_I;
    
    Pe2(i) = symerr(St,So(i,:))/N;
    Pe2_analytic(i) = (2*(M-1)/M)*qfunc(sqrt((6*log2(M)/(M^2-1))*(Eb_N0(i))));  %analytical result
end
'M=2  Simulation Completed'         % display in command window
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Processing_Time = toc

semilogy(SNR, Pe16, '-*', SNR, Pe16_analytic,'-o',SNR, Pe8, '-*', SNR, Pe8_analytic,'-o',SNR, Pe4, '-*', SNR, Pe4_analytic,'-o',SNR, Pe2, '-*', SNR, Pe2_analytic,'-o');
ylim([1e-6 1e-1]);
title('Pe: M-ASK, Analytical and Symulation result')
legend('M=16(simulation)', 'M=16(Analytic)','M=8(simulation)', 'M=8(Analytic)','M=4(simulation)', 'M=4(Analytic)','M=2(simulation)', 'M=2(Analytic)');
xlabel('SNR [dB]');
ylabel('Symbol Error Rate (SER)');

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

[1]魏小薇,曹志刚.低信噪比下数字幅度调制的调制进制快速识别[J].清华大学学报:自然科学版, 2006, 46(1):4.DOI:10.3321/j.issn:1000-0054.2006.01.010.

[2]张星,王拥军,张琦,et al.一种基于D8PSK/ASK正交调制的新型光标记方案研究[J].光电子.激光, 2011, 22(8):5.DOI:CNKI:SUN:GDZJ.0.2011-08-015.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值