👨🎓个人主页
💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
本文基于ES-PSO算法在设计问题上的实现.这里使用有四个问题。
ES的灵感来自鹰的觅食行为。它使用不同的算法进行全局搜索和本地搜索。ES 是一种两阶段方法。在这里,使用ES改进了Particel Swarm优化(PSO)算法。这种方法用于一些设计问题;焊接梁设计,拉伸/压缩,压力容器,悬臂梁设计。
一、引言
本文旨在探讨鹰优化算法(ES)和粒子群优化算法(PSO)在工程设计领域中的应用,特别是针对焊接梁设计、拉伸/压缩弹簧设计、压力容器设计和悬臂梁设计等问题。这两种算法都源于仿生学,通过模拟生物行为来解决复杂的优化问题。
二、算法原理
- 鹰优化算法(ES):
- 灵感来源于鹰的觅食行为。
- 是一种两阶段方法,结合全局搜索和本地搜索。
- 粒子群优化算法(PSO):
- 模拟群居动物觅食迁徙等群体活动中个体与群体协调合作的工作过程。
- 具有概念简单、容易实现、调节参数较少等优点。
三、算法改进与实现
本文使用ES算法改进了PSO算法,以提高优化性能。具体实现步骤如下:
- 定义优化问题:
- 焊接梁设计、拉伸/压缩弹簧设计、压力容器设计和悬臂梁设计等问题的数学模型。
- 算法初始化:
- 随机生成初始粒子群。
- 设置算法参数,如迭代次数、学习因子等。
- 适应度函数:
- 根据优化问题的目标函数,定义适应度函数以评估粒子的优劣。
- 算法迭代:
- 在每次迭代中,更新粒子的速度和位置。
- 根据适应度函数评估粒子的优劣,并记录全局最优解和个体最优解。
- 算法终止:
- 达到预设的迭代次数或满足收敛条件时,算法终止。
四、应用案例
1. 焊接梁设计
- 通过ES-PSO算法优化焊接梁的截面尺寸和焊接工艺参数,以提高梁的承载能力和稳定性。
2. 拉伸/压缩弹簧设计
- 利用ES-PSO算法优化弹簧的材料、线径、圈数等参数,以满足特定的力学性能和空间要求。
3. 压力容器设计
- 应用ES-PSO算法优化压力容器的壁厚、形状、材料选择等,以提高容器的安全性和使用寿命。
- 特别注意材料许用应力跳档和非标法兰的设计问题。
4. 悬臂梁设计
- 通过ES-PSO算法优化悬臂梁的截面尺寸、支撑方式等参数,以提高梁的承载能力和作业范围。
- 特别注意悬臂梁结构强度设计和局部强度优化。
五、运行结果与分析
- 对每个应用案例,展示ES-PSO算法的优化结果,并与传统优化方法进行比较。
- 分析算法的性能指标,如收敛速度、优化精度等。
六、结论与展望
- 总结ES-PSO算法在焊接梁设计、拉伸/压缩弹簧设计、压力容器设计和悬臂梁设计中的应用效果。
- 展望未来的研究方向,如算法参数的优化、多目标优化问题的处理等。
📚2 运行结果
2.1 焊接梁设计
2.2 拉伸压缩弹簧设计
2.3 压力容器设计问题
2.4 悬臂梁设计问题
部分代码:
%______________________________________________________________________________________
% cantilever beam design problem
%______________________________________________________________________________________
function o=Obj_function4(x)
o = [0];
%
o(1)=0.0624*(x(1) + x(2) + x(3) + x(4) + x(5));
%o(2)=65856000/(30*10^6*x(4)*x(3)^3);
o=o+getnonlinear(x);
function Z=getnonlinear(x)
Z=0;
% Penalty constant
lam=10^10;
g(1)=(61/(x(1)^3)) + (37/(x(2)^3)) + (19/(x(3)^3)) + (7/(x(4)^3)) + (1/(x(5)^3)) - 1;
% No equality constraint in this problem, so empty;
geq=[];
% Apply inequality constraints
for k=1:length(g),
Z=Z+ lam*g(k)^2*getH(g(k));
end
% Apply equality constraints
for k=1:length(geq),
Z=Z+lam*geq(k)^2*getHeq(geq(k));
end
% Test if inequalities hold
% Index function H(g) for inequalities
function H=getH(g)
if g<=0,
H=0;
else
H=1;
end
% Index function for equalities
function H=getHeq(geq)
if geq==0,
H=0;
else
H=1;
end
% ----------------- end ------------------------------
🎉3 参考文献
部分理论来源于网络,如有侵权请联系删除。
[1]王盛洁.鹰栖息优化算法的改进和应用研究[D].长江大学,2022.
[2]刘玲,姜全新.基于改进北部苍鹰算法的垂直斗式提升机减速器优化[J].机械强度, 2024, 46(1):243-248.
[3]梁刚,陆志涵,刘云贺,等.Q460高强钢管柱-H形梁焊接节点循环拉伸性能试验研究[J].振动与冲击, 2024, 43(4):303-313.