💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
....
完整PPT见第4部分。
一、引言
- 背景:随着区块链技术的迅速发展,数字加密货币的种类日趋增多,市场分散且波动性大。前三大加密货币(比特币、以太坊、币安币)作为市场的领军者,其价格波动对整个加密货币市场具有重要影响。
- 目的:利用混合LSTM-GARCH模型对前三大加密货币的波动性进行预测,为投资者和政策制定者提供理论支持和实践指导。
二、文献综述
- LSTM模型:长短期记忆网络(LSTM)是递归神经网络(RNN)的一种特殊形式,特别擅长处理长序列数据中的长期依赖问题,在时间序列预测中表现优异。
- GARCH模型:广义自回归条件异方差(GARCH)模型主要用于描述和预测时间序列数据的波动性,能捕捉到金融时间序列中的条件异方差性。
- 混合模型:结合LSTM和GARCH模型的优势,提高预测的准确性和鲁棒性。已有研究表明,混合模型在人民币汇率波动预测中取得了良好的效果。
三、研究方法
-
数据收集:收集前三大加密货币的历史价格数据,包括开盘价、收盘价、最高价、最低价等,以及相关的交易量数据。
-
数据预处理:对收集到的数据进行清洗、标准化或归一化处理,以便于模型的训练。
-
模型构建:
- LSTM阶段:利用LSTM模型学习加密货币时间序列的结构特征,预测下一个时间点的条件均值。
- GARCH阶段:将LSTM预测的均值与实际值之间的残差序列作为输入,利用GARCH模型拟合并预测该序列的波动性。
- 结果合并:将LSTM预测的均值与GARCH预测的波动性结合起来,生成最终的预测值。
-
模型评估:通过对比预测值与实际值,评估模型的预测性能。常用的评估指标包括均方误差(MSE)、平均绝对误差(MAE)等。
四、实证分析
-
数据选取:选取前三大加密货币在某一时间段内的历史价格数据和交易量数据。
-
模型训练:利用处理后的数据对混合LSTM-GARCH模型进行训练。
-
结果分析:
- 分析模型的预测性能,包括预测精度和鲁棒性。
- 对比单一LSTM模型和单一GARCH模型的预测结果,验证混合模型的优越性。
- 探讨不同参数设置对模型预测性能的影响。
五、结论与建议
-
结论:混合LSTM-GARCH模型在前三大加密货币波动性预测中表现出色,优于单一LSTM模型和单一GARCH模型。
-
建议:
- 投资者可以利用该模型进行风险管理和投资决策。
- 政策制定者和监管机构可以关注模型的预测结果,制定相应的监管政策。
- 未来可以进一步探索更高效的集成策略、更先进的深度学习架构以及在更多领域的应用。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]刘程.基于LSTM-J-C模型的数字加密货币风险测度研究[D].南京信息工程大学,2022.
[2]包娜萍,邢紫豪,夏 羽.基于CNN-LSTM模型的比特币价格预测[J].应用数学进展, 2022, 11(5):11.
🌈4 Python代码、数据、完整PPT
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取