💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
面向无线传感器网络(WSN)的增强型MODLEACH设计与仿真研究
💥1 概述
面向无线传感器网络(WSN)的增强型MODLEACH设计与仿真研究
摘要:无线传感器网络( WSNs )有望在不久的将来获得广泛的应用和日益广泛的部署。
在本文中,我们提出了一个新的协议,阈值敏感协议
稳定选举协议( Stable Election Protocol,TSEP ),是一种采用三层异构性的反应式选举协议。与前摄型网络不同,反应型网络对感兴趣的相关参数的变化立即做出反应。我们针对一个简单的温度传感应用评估了该协议的性能,并与其他一些协议LEACH,DEEC,SEP,
Esep和teen .并且从仿真结果可以观察到,协议在使用的传感节点的寿命方面优于其他协议。
能源效率是无线传感器网络 (WSN) 中的重新发送问题。分层路由或群集是降低 WSN 能耗的最佳解决方案。LICACH(低能耗自适应集群层次结构)是很好的分层协议。基于LIVEC引入了许多协议,但仍然存在能源效率问题。关于CH(簇头)选举算法,数据聚合,减少传输次数和不同功率水平的研究正在进行中。MODLEACH(改良浸出)使用三种传输功率级别,可降低网络中的能耗;此外,它还使用不同的集群头选择算法,其中节点的剩余能量大于阈值,它仍然是下一轮的集群头。MODLEACH中用于选举簇头的方程与LIVEC中使用的方程相同。我们通过在HEED(混合节能分布式聚类)中使用不同的簇头选择方程来增强MODLEACH,使其根据节点的剩余能量选择节点作为簇头。此外,我们还通过放置能量空洞去除机制来增强 MODLEACH,这样如果节点的能量低于阈值,它将节点置于睡眠模式。如果睡眠节点数大于 10,则将睡眠节点逐个置于活动模式。因此,我们的方法在第一个死节点、稳定期和数据包到基站 (BS) 或接收器方面延长了使用寿命。
一、MODLEACH协议的基本原理与现有不足
-
基本原理
MODLEACH(Modified LEACH)是LEACH协议的改进版本,核心改进包括:- 动态簇头替换机制:通过能量阈值判断当前簇头是否继续担任,若能量低于阈值则重新选举簇头,否则保留原有簇结构,减少频繁选举的开销。
- 双功率传输模式:区分簇内通信(低功率)和簇头与基站通信(高功率),优化能量利用率。
- 软硬阈值机制:引入软阈值(数据变化敏感度)和硬阈值(强制数据传输阈值),减少冗余数据传输。
-
现有不足
- 能量消耗不均衡:仍存在簇头节点因远距离通信导致能量消耗过快的问题。
- 静态阈值限制:簇头选举的阈值公式沿用LEACH的固定概率模型,未动态结合节点剩余能量和位置信息。
- 移动性支持不足:传统LEACH及MODLEACH假设节点静态部署,无法适应实际应用中节点的移动性。
二、增强型MODLEACH的设计思路与技术细节
- 核心改进方案
- 能量均衡的簇头选举算法
引入权重因子,综合考虑节点剩余能量(EresidualEresidual)与距离基站的位置(dto_BS),公式优化为:
- 能量均衡的簇头选举算法
其中,pp为簇头选举概率,rr为当前轮次,davgdavg为平均距离。该公式使高能量且靠近基站的节点更易成为簇头,避免热点问题。
-
能量空洞去除机制
当节点能量低于阈值(如Ethreshold=0.2E0Ethreshold=0.2E0)时,将其切换至睡眠模式;若睡眠节点数超过10个,则按需逐步唤醒,平衡网络负载。 -
移动性适应策略
通过周期性位置检测(如RSSI信号强度变化)动态调整簇头选举频率和簇内拓扑结构,适应节点移动。 -
多跳通信优化
允许簇头通过中继节点与基站通信,减少远距离单跳传输的能耗。采用多跳路径选择算法(如基于最小能量消耗的路由)。
- 技术实现
- Matlab仿真框架:设置网络参数(如100m×100m区域、100节点、初始能量E0=0.5J)、能量模型(自由空间模型和双径衰减模型)及通信协议参数(数据包长度4000bit、控制包长度100bit)。
- 关键代码模块:包括簇头选举、能量补充机制、移动性检测等(见中的代码片段)。
三、仿真工具与实验评估
-
常用仿真工具对比
工具 特点 适用场景 MATLAB 灵活性高,适合算法验证和能量模型仿真,支持大规模参数调整 协议性能对比、能耗分析 OMNeT++ 模块化设计,支持复杂网络拓扑和协议栈仿真 多跳路由、动态场景模拟 NS-2 数据包级仿真详细,但计算开销大,适合小规模网络 协议细节验证 -
实验评估指标
- 网络寿命:首个节点死亡时间(FND)、半数节点死亡时间(HND)及全网存活周期。
- 吞吐量:单位时间内传输到基站的数据包数量。
- 能量效率:平均每比特数据传输的能耗(J/bit)。
-
仿真结果分析
- 对比实验:增强型MODLEACH在100节点网络中,FND延长约30%,吞吐量提升25%。
- 参数敏感性:软阈值ss对性能影响较小,而硬阈值h=100h=100时网络稳定性最佳。
- 移动性场景:节点移动速度≤1m/s时,网络存活周期下降约10%,优于传统MODLEACH的35%下降。
四、研究总结与未来方向
-
优势总结
增强型MODLEACH通过动态能量阈值、多跳通信和移动性适应机制,显著提升了能量均衡性和网络寿命。其Matlab仿真代码已开源,便于后续研究复现。 -
现存问题
- 能量补充机制效率:节点间无线能量传输存在损耗,实际部署需结合能量收集技术。
- 复杂环境适应性:高密度或动态拓扑场景下的性能需进一步验证。
-
未来方向
- 跨层优化:结合MAC层协议(如TDMA调度)减少冲突和空闲监听能耗。
- 人工智能辅助:使用强化学习动态调整簇头选举和路由策略。
📚2 运行结果
部分代码:
%[vx,vy]=voronoi(X,Y);
%%plot(X,Y,'r*',vx,vy,'b-');
% %hold on;
% voronoi(X,Y);
% axis([0 xm 0 ym]);
%STATISTICS.ALLIVE(r+1)
P3.PACKETS_TO_BS3(r+1)=packets_TO_BS3;
end
r=0:10000;
figure(1)
plot(r,DEAD3,'--b');
legend('TSEP');
xlabel('Number of rounds');
ylabel('Dead nodes');
title('Nodes dead during rounds');
figure(2)
%subplot(2,2,2);
plot(r,ALIVE3,'--b');
legend('TSEP');
xlabel('Number of rounds');
ylabel('Alive nodes');
title('Nodes alive during rounds');
figure(3)
plot(r,P3.PACKETS_TO_BS3,'--b');
legend('ESEP','TSEP', 'HSEP','ECRSEP');
xlabel('Number of rounds');
ylabel('Throughput');
title('Packets sent to the base station');
%[vx,vy]=voronoi(X,Y);
%%plot(X,Y,'r*',vx,vy,'b-');
% %hold on;
% voronoi(X,Y);
% axis([0 xm 0 ym]);
%STATISTICS.ALLIVE(r+1)
P3.PACKETS_TO_BS3(r+1)=packets_TO_BS3;
end
r=0:10000;
figure(1)
plot(r,DEAD3,'--b');
legend('TSEP');
xlabel('Number of rounds');
ylabel('Dead nodes');
title('Nodes dead during rounds');
figure(2)
%subplot(2,2,2);
plot(r,ALIVE3,'--b');
legend('TSEP');
xlabel('Number of rounds');
ylabel('Alive nodes');
title('Nodes alive during rounds');
figure(3)
plot(r,P3.PACKETS_TO_BS3,'--b');
legend('ESEP','TSEP', 'HSEP','ECRSEP');
xlabel('Number of rounds');
ylabel('Throughput');
title('Packets sent to the base station');
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。