💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
具有源荷不平衡特性的配电网智能软开关和储能联合规划研究
本研究程序旨在复现《具有源荷不平衡特性的配电网智能软开关和储能联合规划》中的核心模型架构,重点实现智能软开关(SOP)与储能系统(ESS)的协同规划方法。受限于研究范围,程序未涵盖原文献中的聚类分析模块及分布鲁棒优化部分。基于IEEE 33节点标准测试系统,程序构建了与原文NY配电网场景等效的仿真环境,具体配置包括:在电网中预设3个分布式电源接入点(含光伏与风电节点),其拓扑位置严格遵循文献设定。优化目标设定为系统年综合运行成本最小化,并据此构建了含SOP与ESS协同规划的混合整数非线性数学模型。
针对原始模型中固有的非线性非凸特性,研究采用大M法与二阶锥松弛(SOCR)技术进行模型重构,最终转化为混合整数二阶锥规划(MISOCP)标准形式。求解过程依托MATLAB平台与Gurobi优化器实现,支持用户自定义SOP与ESS的配置数量(默认配置为两组)。经实测验证,程序运行稳定性优异,其算法实现逻辑与模型构建方法可为同类研究提供关键技术参考。
需特别强调的是,储能系统的配置约束表达是本程序的核心技术挑战。为实现非线性约束的高效线性化转换,同时确保储能容量、充放电功率等关键参数严格满足工程实际需求,研究团队创新性地设计了多层级约束处理机制。该机制通过引入辅助变量与逻辑约束条件,在保障模型求解效率的同时,有效规避了非线性优化可能引发的收敛性风险。此类技术处理策略对后续相关领域的研究具有显著的学术借鉴价值。
一、智能软开关(SOP)与储能系统(ESS)的功能与作用
- 智能软开关(SOP)的核心功能
- 连续功率调控:SOP是一种全控型电力电子装置,通过电压源换流器(VSC)实现馈线有功和无功功率的精准调节,响应速度可达毫秒级,支持频繁动作。
- 解决源荷波动问题:在分布式电源(如光伏、风电)和新型负荷(如电动汽车)高渗透场景下,SOP可平抑功率波动,缓解电压越限和馈线失衡。
- 拓扑灵活性:支持多样化的拓扑结构(如并联联络开关结构),通过直流环节连接多个VSC,优化配电网潮流分布并降低建设成本。
2. 储能系统(ESS)的关键作用
- 时间尺度能量转移:ESS通过削峰填谷、调频调压,解决源荷时序不匹配问题,延缓配电网升级投资。
- 电能质量提升:作为备用电源,ESS可在电网故障时快速响应,补偿电压跌落、频率偏移,提高供电可靠性。
- 协同新能源消纳:平抑分布式电源出力波动,增强配电网对可再生能源的接纳能力。
二、源荷不平衡特性的具体表现与量化指标
-
源荷不平衡的表现
- 功率波动:新能源出力与负荷需求在时空上不匹配,导致净负荷(新能源出力减负荷)出现短时剧烈波动。
- 电压质量问题:三相电压不平衡、电压越限等现象频发,尤其在工业级源荷场景中显著。
- 净负荷分布离散:净负荷时序数据的分散性反映源荷匹配度低,需传统机组频繁调整出力,增加运行成本。
- 功率波动:新能源出力与负荷需求在时空上不匹配,导致净负荷(新能源出力减负荷)出现短时剧烈波动。
-
量化指标
- 信息熵(H) :衡量净负荷时序数据的离散程度。熵值越大,源荷匹配度越低,计算公式为:
- 信息熵(H) :衡量净负荷时序数据的离散程度。熵值越大,源荷匹配度越低,计算公式为:
其中,pk为归一化后的净负荷概率分布。
- 源荷平衡度(Kbi) :定义为:
该指标越大,源荷协同性越强,新能源消纳潜力越高。
三、智能软开关与储能协同优化的数学模型构建
-
目标函数
- 经济性优化:最小化年度综合成本(包括设备投资、运行损耗及电池退化成本)。
- 技术性能优化:降低配电网有功损耗、电压偏差,提升灵活性和可靠性。
-
约束条件
- SOP约束:包括换流器容量、功率平衡方程及损耗模型。例如:
- SOP约束:包括换流器容量、功率平衡方程及损耗模型。例如:
其中,Ploss为换流器损耗,Smax为容量上限。
- ESS约束:涵盖充放电功率限制、荷电状态(SOC)上下限及寿命衰减模型。
- 优化方法
- 多目标粒子群算法:用于求解有功/无功功率的最优分配,平衡损耗与电压质量。
- 二阶锥规划(SOCP) :将非线性约束转化为凸优化问题,提升求解效率。
四、现有联合规划方法
-
多目标优化
- 分层规划模型:例如上层规划ESS容量和位置,中层优化SOP配置,下层实现日内运行调度,通过双向迭代平衡经济性与灵活性。
- 权重分配法:在目标函数中引入权重系数,协调投资成本、运行损耗与新能源消纳率。
-
鲁棒优化
- 不确定性处理:采用盒式集或Wasserstein距离描述源荷波动,构建min-max-min三层模型,抵御最恶劣场景下的风险。
- 混合整数线性规划(MILP) :通过线性化潮流方程和储能约束,提升大规模问题的求解效率。
五、典型场景下的联合规划案例
- IEEE 33节点系统验证
- 场景特点:高渗透光伏接入,负荷峰谷差显著,源荷时序不匹配。
- 优化效果:
- SOP与ESS联合部署后,网络损耗降低15%-20%,电压偏差减少30%。
- 通过协调控制,新能源消纳率提升至95%以上,灵活性指标提高25%。
- 实际配电网应用
- 案例背景:某城市配电网因电动汽车充电站密集导致电压波动。
- 规划方案:在关键节点部署三端SOP与分布式储能,结合虚拟储能(VES)实现无功补偿,电压越限率下降40%。
六、挑战与展望
-
当前挑战
- 经济性平衡:SOP换流器与储能的高投资成本需通过容量优化和政策补贴缓解。
- 模型复杂度:多时间尺度、多设备协同的混合整数非线性问题求解难度大。
-
未来研究方向
- 智能化协同控制:结合人工智能预测源荷波动,实现秒级实时调控。
- 新型拓扑结构:探索模块化多电平换流器(MMC)与混合储能(如液流电池+超级电容)的集成方案。
总结
智能软开关与储能系统的联合规划是应对源荷不平衡的核心技术路径。通过多目标优化与鲁棒优化方法,结合分层模型和先进算法,可显著提升配电网的经济性、可靠性与新能源消纳能力。未来需进一步突破设备成本与模型复杂度的限制,推动配电网向柔性化、智能化方向发展。
📚2 运行结果
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]王鹏,李华伟,张沛.具有源荷不平衡特性的配电网智能软开关和储能联合规划[J].电力系统自动化,2025,49(05):38-47.
🌈4 Matlab代码、数据、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取