💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议粉丝按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能让人胸中升起一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
摘要——计算机辅助诊断(CAD)范式鉴别恶性病变和良性病变的货币在超声乳房图像中。但即使是最老练的调查人员通常依赖于一维表示图像的扫描线。这样的向量表示由于一维时间序列的数学可处理性,它们很方便。然而,他们没有考虑到像素之间的空间相关性,这是至关重要的在乳腺图像的肿瘤检测和分类中。在这个在论文中,我们提出了一个用于肿瘤检测和诊断的CAD系统超声乳腺图像中的分类(癌性vs.良性)基于二维自回归移动平均模型乳房图像的ARMA模型。首先,我们使用沃尔德分解定理,即超声乳房图像可以通过二维ARMA随机场精确建模。与1D情况一样,2D ARMA参数估计问题为由于估计2D移动平均(MA)参数的非线性,比其2D AR对应物难得多。我们建议使用以下公式来估计2D ARMA参数两阶段Yule-Walker最小二乘算法。估计然后,参数被用作统计推断的基础乳房图像的生物物理解释。我们评估了二维ARMA矢量特征在真实超声中的性能使用k-means分类器的图像。我们的结果表明基于二维ARMA模型的拟议CAD系统导致能够准确分割超声的参数乳腺图像分为三个区域:健康组织、良性肿瘤、,以及癌性肿瘤。此外,特异性和敏感性拟议的二维CAD系统的性能优于其一维同源物。
关键词—乳腺癌,二维ARMA模型,k-means算法
乳腺癌仍然是一个重大的公共卫生问题美国的问题:它是第二大女性死亡率,令人不安的是,每八个女性中就有一个美国将在她被诊断出患有乳腺癌生命周期。在完全了解这种疾病的原因之前,早期发现仍然是改善乳腺癌的唯一希望预后和治疗。乳腺癌筛查方式主要基于临床检查、乳房X线摄影、,超声成像、磁共振成像(MRI)和核心活检。乳房X线摄影(乳房X射线成像)是迄今为止最快和最便宜的乳腺癌筛查测试。不幸的是,它也是放射学中最难治疗的疾病之一要解释的图像:乳房X线照片对比度低指示乳房疾病的特征通常非常小。许多研究表明,超声波和MRI成像这些技术可以通过检测来帮助补充乳房X线摄影乳房X线摄影可能无法发现的小型乳腺癌。然而,这些技术往往无法确定检测到的肿瘤是癌性的还是良性的,可能需要活检推荐。因此,许多不必要的活组织检查由于高假阳性率,经常进行。计算机辅助诊断(CAD)范例最近在病变检测和鉴别方面受到广泛关注在X射线和超声乳房X线照片中[1]-[4]。这个临床中遇到大量阴性活检如果可以使用计算机系统,则可以减少练习帮助放射科医生筛查乳房图像。从广义上讲文献中提出的CAD系统可分为四大类:几何[1]、人工智能[2]、金字塔(或多分辨率)[3]和基于模型的技术[4]、[5]。几何方法采用形态学以及其他分割技术,以提取小斑点乳腺图像中被称为微钙化的钙[1]。然而,该程序通常需要先验知识肿瘤的形态特征。此外,这些技术也倾向于依靠许多阶段的启发式尝试以消除假阳性。人工智能技术包括神经网络和模糊逻辑方法。这些系统的性能与架构紧密相关网络和训练数据的数量。乳腺癌是一种异质性疾病,包括几种亚型预后明显。特别是,与以下因素相关的可变性乳腺癌的出现,从相对罕见到相对常见明亮条纹和斑点复杂图案的均匀性[2]使得ANN需要大量的训练数据集来确保一定程度的可靠性。金字塔或多分辨率技术主要指小波变换[3],它可以从信号分解的角度来看。具体而言,信号被分解到一组基本小波函数上。小波分析的一个非常吸引人的特征是为所有比例提供统一的分辨率。然而受基本小波函数大小的限制,下行均匀分辨率的缺点是分辨率均匀较差。基于模型的方法包括线性、非线性和有限元建立乳房精确模型的方法[4],[5]。这个该模型随后用于图像匹配、检测和分类[5]。详细文章下载。
📚2 运行结果
部分代码:
%arma2Ddemo
DISPLAYFLAG = 0;
% define poles for simulated signals
% along rows
Alpha1 = [0.1-0.4*1i 0.1+0.4*1i];
p1 = length(Alpha1);
% along columns
Alpha2 = [-0.25-0.1*1i -0.25+0.1*1i];
p2 = length(Alpha2);
% AR coeffs
[A p] = poles2coeff(Alpha1,Alpha2);
% define zeroes for simulated signals
% along rows
Beta1 = [0.035];
q1 = length(Beta1);
% along columns
Beta2 = [0.5];
q2 = length(Beta2);
% AR coeffs
[B q] = poles2coeff(Beta1,Beta2);
%% AR 2D process simulation
A_ar = A;
N1 = 512;
N2 = 512;
sigma2 = 1;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
🌈4 Matlab代码、文章下载
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取