💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
⛳️赠与读者
👨💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。
或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎
💥1 概述
我国制造系统的设备布局设计过程中如何可以更加高效准确的计算得到设备布局设计结果是十分重要的,并且智能优化算法的因素是当前增加我国制造业在国际市场上的竞争力的主要因素。而智能优化算法可以帮助设备在不同生产条件、制作人员人数不同、制造产品标准等不同数值进行计算,得到更加合理的设备布局设计,在物流运输成本、产品生产效率和产品生产质量等得到提高"。
本文主要研究了在设备布局设计中应用智能优化算法所带来的优势。首先,本文介绍了相关智能优化算法,帮助对其来源及工作原理等进行深度理解。然后,本文通过设备布局设计的相关概念进行介绍,加深对所要解决的布局设计问题的理解。最后,本文通过粒子群优化算法算法在设备布局设计中的应用为例,表明智能优化算法在设备布局设计中解决问题的优势。
设备布局设计是指将生产设备和辅助设备根据场地、功能和协作配合等将相关设备管道等进行合理的安排放置,保障企业生产工作可以正确顺利的开展,并且资源相互传递过程中出现的物流成本和时效等都可以做到最小化的设计。而在此过程中最重要的两个因素是设备的位置和场地的面积。设备布局设计是空间组织问题,通过计算将设备进行搭配,完成生产链的循环,减少工业废物的出现,增加产品的利用率,提升生产效率,节约生产成本,使得制造企业的经济利益最大化。
摘要
本文主要研究基于粒子群优化算法(PSO)的设备布局设计。设备布局设计是制造系统中的关键环节,合理的布局能够降低物流成本、提高生产效率。粒子群优化算法作为一种智能优化算法,具有实现简单、高效性、适应性强等特点。本文首先介绍了设备布局设计的相关概念及其重要性,然后详细阐述了粒子群优化算法的原理和流程,接着构建了设备布局优化的数学模型,并通过粒子群优化算法进行求解。最后,通过实例验证了该方法的有效性,结果表明基于粒子群优化算法的设备布局设计能够有效降低物流成本,提高设备布局的合理性。
1. 引言
1.1 研究背景
在全球经济一体化的背景下,制造业面临着激烈的市场竞争。设备布局设计作为制造系统中的重要环节,直接影响着生产效率、物流成本和产品质量。传统的布局设计方法存在一定的局限性,难以满足现代制造系统对布局优化的高要求。因此,研究基于智能优化算法的设备布局设计具有重要的现实意义。
1.2 研究目的
本文旨在探索基于粒子群优化算法的设备布局设计方法,通过构建合理的数学模型,利用粒子群优化算法的全局搜索能力和快速收敛特性,实现设备布局的优化,降低物流成本,提高生产效率。
2. 设备布局设计相关概念
设备布局设计是指将生产设备和辅助设备根据场地、功能和协作配合等要求进行合理安排,以保障企业生产工作的顺利开展,并使物流成本和资源传递时效最小化。设备布局设计是空间组织问题,通过计算将设备进行搭配,完成生产链的循环,减少工业废物的出现,增加产品的利用率。
3. 粒子群优化算法原理
粒子群优化算法(PSO)是一种基于群体智能的优化算法,模拟了自然界中鸟群觅食的行为模式。每个粒子代表一个潜在的解决方案,通过跟踪个体极佳位置和全局极佳位置,不断调整自身的飞行方向和速度。PSO算法具有实现简单、高效性、适应性强等特点,广泛应用于工程优化、人工智能、图像处理等领域。
4. 设备布局优化的数学模型
4.1 目标函数
设备布局优化的目标函数通常包括物流成本最小化、设备利用率最大化等。在本文中,以物流成本最小化为目标函数,通过量化设备之间的物流关系,构建数学模型。
4.2 约束条件
设备布局优化的约束条件包括设备占地面积、设备间距、消防通道等。通过建立合理的约束条件,确保设备布局的可行性和安全性。
5. 粒子群优化算法在设备布局中的应用
5.1 算法流程
粒子群优化算法的流程包括初始化粒子群、计算适应度值、更新个体极佳位置和全局极佳位置、调整粒子速度和位置等。在设备布局优化中,通过粒子群优化算法搜索最优布局方案。
5.2 参数设置
粒子群优化算法的参数设置对算法的性能有重要影响。在本文中,通过实验调整惯性权重、加速系数等参数,提高算法的搜索能力和收敛速度。
6. 实例验证
通过某机加车间的实际案例,验证了基于粒子群优化算法的设备布局设计方法的有效性。结果表明,该方法能够有效降低物流成本,提高设备布局的合理性。
7. 结论与展望
本文基于粒子群优化算法的设备布局设计研究取得了较好的成果,验证了该方法的有效性。未来,将进一步改进粒子群优化算法,提高其在复杂设备布局问题中的应用效果。
📚2 运行结果
部分代码:
clc;
clear;
close all;
%% Problem Definition
model=CreateModel(); % Create Model
CostFunction=@(sol1) MyCost(sol1,model); % Cost Function
Vars.xhat.Min=0;
Vars.xhat.Max=1;
Vars.xhat.Size=[1 model.n];
Vars.xhat.Count=prod(Vars.xhat.Size);
Vars.xhat.VelMax=0.1*(Vars.xhat.Max-Vars.xhat.Min);
Vars.xhat.VelMin=-Vars.xhat.VelMax;
Vars.yhat.Min=0;
Vars.yhat.Max=1;
Vars.yhat.Size=[1 model.n];
Vars.yhat.Count=prod(Vars.yhat.Size);
Vars.yhat.VelMax=0.1*(Vars.yhat.Max-Vars.yhat.Min);
Vars.yhat.VelMin=-Vars.yhat.VelMax;
Vars.rhat.Min=0;
Vars.rhat.Max=1;
Vars.rhat.Size=[1 model.n];
Vars.rhat.Count=prod(Vars.rhat.Size);
Vars.rhat.VelMax=0.1*(Vars.rhat.Max-Vars.rhat.Min);
Vars.rhat.VelMin=-Vars.rhat.VelMax;
%% PSO Parameters
MaxIt=500; % Maximum Number of Iterations
nPop=50; % Population Size (Swarm Size)
w=1.0; % Inertia Weight
wdamp=0.99; % Inertia Weight Damping Ratio
c1=0.7; % Personal Learning Coefficient
c2=1.5; % Global Learning Coefficient
% % Constriction Coefficients
% phi1=2.05;
% phi2=2.05;
% phi=phi1+phi2;
% chi=2/(phi-2+sqrt(phi^2-4*phi));
% w=chi; % Inertia Weight
% wdamp=1; % Inertia Weight Damping Ratio
% c1=chi*phi1; % Personal Learning Coefficient
% c2=chi*phi2; % Global Learning Coefficient
%% Initialization
empty_particle.Position=[];
empty_particle.Cost=[];
empty_particle.Sol=[];
empty_particle.Velocity=[];
empty_particle.Best.Position=[];
empty_particle.Best.Cost=[];
empty_particle.Best.Sol=[];
particle=repmat(empty_particle,nPop,1);
GlobalBest.Cost=inf;
for i=1:nPop
% Initialize Position
particle(i).Position=CreateRandomSolution(model);
% Initialize Velocity
particle(i).Velocity.xhat=zeros(Vars.xhat.Size);
particle(i).Velocity.yhat=zeros(Vars.yhat.Size);
particle(i).Velocity.rhat=zeros(Vars.rhat.Size);
% Evaluation
[particle(i).Cost, particle(i).Sol]=CostFunction(particle(i).Position);
% Update Personal Best
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
particle(i).Best.Sol=particle(i).Sol;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest=particle(i).Best;
end
end
BestCost=zeros(MaxIt,1);
%% PSO Main Loop
for it=1:MaxIt
for i=1:nPop
% ---- Motion on xhat
% Update Velocity
particle(i).Velocity.xhat = w*particle(i).Velocity.xhat ...
+c1*rand(Vars.xhat.Size).*(particle(i).Best.Position.xhat-particle(i).Position.xhat) ...
+c2*rand(Vars.xhat.Size).*(GlobalBest.Position.xhat-particle(i).Position.xhat);
% Apply Velocity Limits
particle(i).Velocity.xhat = max(particle(i).Velocity.xhat,Vars.xhat.VelMin);
particle(i).Velocity.xhat = min(particle(i).Velocity.xhat,Vars.xhat.VelMax);
% Update Position
particle(i).Position.xhat = particle(i).Position.xhat + particle(i).Velocity.xhat;
% Velocity Mirror Effect
IsOutside=(particle(i).Position.xhat<Vars.xhat.Min | particle(i).Position.xhat>Vars.xhat.Max);
particle(i).Velocity.xhat(IsOutside)=-particle(i).Velocity.xhat(IsOutside);
% Apply Position Limits
particle(i).Position.xhat = max(particle(i).Position.xhat,Vars.xhat.Min);
particle(i).Position.xhat = min(particle(i).Position.xhat,Vars.xhat.Max);
% ---- Motion on yhat
% Update Velocity
particle(i).Velocity.yhat = w*particle(i).Velocity.yhat ...
+c1*rand(Vars.yhat.Size).*(particle(i).Best.Position.yhat-particle(i).Position.yhat) ...
+c2*rand(Vars.yhat.Size).*(GlobalBest.Position.yhat-particle(i).Position.yhat);
% Apply Velocity Limits
particle(i).Velocity.yhat = max(particle(i).Velocity.yhat,Vars.yhat.VelMin);
particle(i).Velocity.yhat = min(particle(i).Velocity.yhat,Vars.yhat.VelMax);
% Update Position
particle(i).Position.yhat = particle(i).Position.yhat + particle(i).Velocity.yhat;
% Velocity Mirror Effect
IsOutside=(particle(i).Position.yhat<Vars.yhat.Min | particle(i).Position.yhat>Vars.yhat.Max);
particle(i).Velocity.yhat(IsOutside)=-particle(i).Velocity.yhat(IsOutside);
% Apply Position Limits
particle(i).Position.yhat = max(particle(i).Position.yhat,Vars.yhat.Min);
particle(i).Position.yhat = min(particle(i).Position.yhat,Vars.yhat.Max);
% ---- Motion on rhat
% Update Velocity
particle(i).Velocity.rhat = w*particle(i).Velocity.rhat ...
+c1*rand(Vars.rhat.Size).*(particle(i).Best.Position.rhat-particle(i).Position.rhat) ...
+c2*rand(Vars.rhat.Size).*(GlobalBest.Position.rhat-particle(i).Position.rhat);
% Apply Velocity Limits
particle(i).Velocity.rhat = max(particle(i).Velocity.rhat,Vars.rhat.VelMin);
particle(i).Velocity.rhat = min(particle(i).Velocity.rhat,Vars.rhat.VelMax);
% Update Position
particle(i).Position.rhat = particle(i).Position.rhat + particle(i).Velocity.rhat;
% Velocity Mirror Effect
IsOutside=(particle(i).Position.rhat<Vars.rhat.Min | particle(i).Position.rhat>Vars.rhat.Max);
particle(i).Velocity.rhat(IsOutside)=-particle(i).Velocity.rhat(IsOutside);
% Apply Position Limits
particle(i).Position.rhat = max(particle(i).Position.rhat,Vars.rhat.Min);
particle(i).Position.rhat = min(particle(i).Position.rhat,Vars.rhat.Max);
% Evaluation
[particle(i).Cost, particle(i).Sol] = CostFunction(particle(i).Position);
% Apply Mutation
NewParticle=particle(i);
NewParticle.Position = Mutate(particle(i).Position, Vars);
[NewParticle.Cost, NewParticle.Sol]=CostFunction(NewParticle.Position);
if NewParticle.Cost<=particle(i).Cost || rand < 0.2
particle(i)=NewParticle;
end
% Update Personal Best
if particle(i).Cost<particle(i).Best.Cost
particle(i).Best.Position=particle(i).Position;
particle(i).Best.Cost=particle(i).Cost;
particle(i).Best.Sol=particle(i).Sol;
% Update Global Best
if particle(i).Best.Cost<GlobalBest.Cost
GlobalBest=particle(i).Best;
end
end
end
% Apply Local Search (Improvement) to Global Best
NewParticle=GlobalBest;
NewParticle.Position=ImproveSolution(GlobalBest.Position,model,Vars);
[NewParticle.Cost, NewParticle.Sol]=CostFunction(NewParticle.Position);
if NewParticle.Cost<=GlobalBest.Cost
GlobalBest=NewParticle;
end
BestCost(it)=GlobalBest.Cost;
if GlobalBest.Sol.IsFeasible
FLAG=' (Feasible)';
else
FLAG='';
end
disp(['Iteration ' num2str(it) ': Best Cost = ' num2str(BestCost(it)) FLAG]);
w=w*wdamp;
% Plot Solution
figure(1);
PlotSolution(GlobalBest.Sol,model);
pause(0.01);
end
BestSol = GlobalBest;
%% Results
figure;
plot(BestCost,'Color','r','LineWidth',2);
xlabel('迭代次数');
ylabel('最优解');
grid on;
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)
[1]曾议,竺长安,沈连婠,等.基于群智能算法的设备布局离散优化研究[J].计算机集成制造系统, 2007, 13(003):541-547.
[2]龚安东,李鹏.基于粒子群算法的救护车布局优化[J].农业装备与车辆工程, 2024, 62(2):82-85.
[3]李建荣,廖达雄,陈冰,等.基于粒子群算法的车间布局优化应用研究[J].机械设计与制造工程, 2011, 40(3):6-9.
🌈4 Matlab代码实现
资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取